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Abstract

The global demand for energy, particularly for transport fuels, will continue to increase significantly in the future.
In addition to other options, like increased technological efficiencies, traffic reduction or modal shift, biofuels are
promoted to contribute strongly to the transport sector in the years to come. Biofuels are also promoted as part
of the EU strategy for decarbonising the transport sector with the aim of reducing associated GHG emissions.
This paper considers some of the most important biofuels. A selection of biofuel options (biodiesel, bioethanol,
biomethane, hydrotreated vegetable oils and fats, lignocellulosic-based fuels) were characterised by their conversion
technologies and stage of development. They were analysed, concerning technical (overall efficiency), economic
(investments and biofuel production costs) and environmental aspects (GHG performance). Additionally, GHG mitigation
costs were calculated with regard to the GHG-based biofuel quota.

Keywords: Biofuel; Conversion technologies; Costs; GHG mitigation
Review
Introduction
The transport sector accounts for half of the global min-
eral oil consumption, nearly 20% of world energy used
today and it is expected to increase in the coming years.
On a global level, about 116 EJ a−1 are expected until 2050
i.e. an increase of approximately 25% compared to 2009
(93 EJ a−1) [1]. Biofuels are promoted as one of the best
means to help meet the prospected increases in energy
demand in the years to come, in addition to other options
like improved technological efficiency (e.g. of propulsion
systems for electric vehicles), traffic reduction or modal
shift (e.g. from road to rail systems). Despite one or two
exceptions, biofuel use is driven by governmental policies
and regulations. The most important drivers of the bio-
fuels market are security of energy supply (e.g. in America
and Asia), mitigation of greenhouse gases (e.g. in Europe)
and the diversification of fuel sources to buffer against the
instabilities of fossil fuel prices (e.g. in Brazil). Currently,
the global biofuel production is estimated to be 2.9 EJ a−1

[2]. The total biofuel demand is expected to meet approxi-
mately 27% (32 EJ a−1) of the total transport fuel demand
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in 2050, with the majority of biofuels still being used
for road transport, followed by aviation and shipping
(Figure 1). Taking into account specific fuel quality
requirements (e.g. propulsion systems and emission
standards), in the IEA blue map scenario, an increase in
high-quality diesel fuels (synthetic biodiesel and hydro-
treated fuels) instead of conventional biodiesel and
biomethane as well as a shift from corn-based bioethanol
to lignocellulosic bioethanol are expected by 2050 [3].
Compared to this biofuel mix outlined in this scenario,
the maximum technical biofuel potential estimated at 6.5
EJ a−1 for 2020 and a total technical raw material potential
in the range of 100–300 EJ a−1 for 2050 seem possible [4].
Some biofuels have the potential to significantly en-

hance energy security (e.g. with regard to storable energy,
regional supply and substituting fossil fuels), achieve GHG
mitigation targets compared to fossil fuels, as well as pro-
viding the opportunity to diversify agriculture systems
to providing both fuel and food, while simultaneously
supporting rural communities. However, biofuels have
undergone much scrutiny in the past number of years
particularly in relation to the ‘fuel vs food’ debate and
have been perceived less positively as a result. Therefore,
more stringent regulations and strategies are being intro-
duced in order to facilitate appropriate allocation of land
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Figure 1 Global biofuels demand and their use in transport modes (adapted from [3], cf. also [5]).
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and efficient use of land, in order to produce both food
and fuels [6,7].
Biofuels are promoted as part of the EU's proposal

for decarbonising the transport sector with the aim of
reducing the associated GHG emissions. The main instru-
ments at the EU level are the directives 2009/28/EC and
2009/30/EC [7,8]. Both directives define specific goals for
the share of renewables within the transport sector of 10%
by 2020, as well as a GHG reduction target for the entire
transport fuel sector of 6% in 2020. They have to be
implemented in each of the European member states.
Further to this, Germany proposes to introduce from
2015 a GHG mitigation quota. This means that fossil fuel
companies will be obligated to blend the respective biofuel
with its fossil counterpart petrol or diesel, in order to
produce a fuel mix which achieves a 7% GHG mitigation
(compared to fossil gasoline and diesel mix) for the entire
fuel sector by 2020 [9].
Therefore, in light of these targets, the aim of this

paper is to show how a selection of current biofuel and
future biofuel options (2050) identified as the most im-
portant by the IEA biofuels roadmap (Figure 1) can be
assessed regarding certain technical, economic and envir-
onmental criteria. This was done in order to provide a
greater insight into the important drivers for biofuel pro-
duction routes and to understand the complexity of com-
parisons to be made, when trying to develop a benchmark
for such conversion systems. Different studies and pu-
blications were screened to enable a basis of comparison
between the different biofuel options. Additionally, in light
of the proposed GHG mitigation quota for Germany, an
overall indicator to assess the potential costs of GHG miti-
gation was estimated.
Characteristics of biofuel conversion pathways
There are various options to produce liquid and gaseous
fuels from biomass with clearly defined fuel characteristics
that comply with the regulated fuel quality standards.
Depending on the biomass utilised, there are three main
conversion options: physico-chemical, biochemical and
thermo-chemical which were considered. All three path-
ways were characterised by different grades of tech-
nological complexity and flexibility [10,11], as well as
different production configurations, shown in Figure 2.
A selection of the most important biofuels are sum-

marised in Table 1, using the most relevant characteris-
tics that need to be taken into account when making
assessments of such biofuels. These include: raw mate-
rials, conversion steps involved in the production chain,
relevant by-products that arise during the production
process, state of technical development, current installed
capacity, as well as the R&D challenges of these biofuel
options. The interaction of all of these variables plays an
important role in why and how certain biofuel options
are more successful than others. Conventional biofuels,
or first generation biofuels, such as biodiesel and bio-
ethanol are based on traditionally grown vegetable oil
crops, sugar and starch crops, respectively. Well-established
technologies are applied for their production and the
biofuels are available on the global market in considerable
amounts. Additionally, by-products from biofuel produc-
tion can be used as fodder for livestock (e.g., extraction
meal, vinasse, distiller's grains with solubles (DDGS)) and
as raw materials in the chemical industry (e.g., glycerine
and salt fractions) (Table 1).
In contrast, biofuels with a lower technology readiness

level (Table 1), or second generation biofuels, can be
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Figure 2 Overview of biofuel conversion pathways (adapted from [5]).
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produced via bio- and thermo-chemical conversion
routes from: (i) the whole crop or (ii) a diversified range
of raw materials, including biowastes or residue streams
that are rich in lignin and cellulose (e.g., straw, grass
or wood) (Figure 2). Usually, for such biofuels (e.g., syn-
thetic fuels), production plants and the surrounding
infrastructure are comparably more complex than for
conventional ones.
Within a certain biofuel route (e.g., bioethanol and syn-

thetic fuels), overall biofuel conversion plant concepts can
vary quite extensively; they cannot be bought ‘off the
shelf ’. Referring to the existing biofuel plants, the realised
concepts depend on regionally specific conditions, i.e. the
equipment provider, as well as certain optimisations made
by the biofuel production plant operators themselves
(e.g., with regard to increase efficiency during operation).
Therefore, each biofuel plant can be considered as an indi-
vidual concept. Moreover, due to these customised de-
signs, many biofuel concepts show the potential to be part
of biorefineries that can function as a multiproduct
provider (e.g., biofuels, bulk chemicals, supply of surplus
power and heat).

Technical comparison—production efficiency
Biomass and the land utilised for its production are
limited resources, therefore, the efficient and sustainable
conversion of a biomass into the various related prod-
ucts is of the utmost importance [15,16]. The efficiency
with which a biomass raw material can be converted
into an energy carrier is one of the most important
criteria for a biofuel production chain.
Thus for biofuel production plants, the technical effi-

ciency was assessed, taking into account the input/out-
put mass and energy streams (i.e. biomass raw material,
process energy or other energy-related auxiliaries, as well
as the biofuel itself and relevant by-products supplied and
delivered to and from a production plant without up- and
downstream steps like biomass production and logistics).
However, due to the mixture of different industrial prac-
tices observed in various publications, coupled with the
application of different assessment approaches, it is often
quite difficult to compare the overall energetic efficiency
reported for a particular biofuel option. Therefore, the
variance of these values needs to be normalised to enable
a more comprehensive comparison of the overall ener-
getic efficiency between the different biofuel production
options. Mass and energy balances taken from publica-
tions and from the Deutsches Biomasseforschungszentrum
(DBFZ) database [17] were used to calculate the net ener-
getic efficiency associated with each of the biofuel options
shown in Table 1. For all biofuel production plants calcu-
lated, the mass and energy balances included the following
plant operations: biomass pre-treatment, biomass con-
version to biofuel and final biofuel treatment, as well as
auxiliary units, e.g. for process energy provision.
The overall energetic efficiency of biofuel production

plants is defined as ratio between the total output energy
and total input energy. The total input energy includes



Table 1 Characteristics of selected biofuel options and their development status [2,5,11-13]

Raw materials Main conversion steps/plant
concept

By-productsa R&D Status of
technical
developmentb

Plant
capacityc

Installed
capacity |
biofuel
production
worldwided

Installed
capacity |
biofuel
production
EUd

Liquid biofuels

Biodiesel (FAME) Oil crops (e.g.,
rape, soya, palm),
animal fats, waste
oils (UCO, grease),
algae and micro
oils

Oil extraction (mechanical/solvent),
oil refining, trans-/esterification,
biodiesel cleaning and upgrading

Press cake/extraction
meal, glycerine, salt
fractions, fatty acids,
oleochemicals

Process optimisation with
regard to e.g., oil quality,
catalysts, auxiliary substitutionj

Commercial
TRL 9

2–350 MW 1,835 mn GJ
a−1 | 624
mn GJ a−1

823 mn GJ
a−1 | 336
mn GJ a−1

Hydrotreated
vegetable oils (HVO)
or hydroprocessed
esters and fatty
acids (HEFA)

Oil extraction (mechanical/solvent),
oil refining, hydrotreating of oil,
isomerisation

Extraction meal,
fractions like
naphtha, propane/
butane, waxes

Raw material diversification
(e.g., algae, micro oils, hydrothermal
oil), co-refiningk, process optimisation
with regard to e.g., catalysts, H2

demand

Commercial
TRL 9

255–265 MW
(150–1,220 MW)

102 mn
GJ a−1 | n.a.

65 mn GJ
a−1 | 46 mn
GJ a−1

(estimation)

Bioethanol
(conventional)

Sugar (e.g., beets
and cane) or starch
(e.g., corn, wheat,
rye)

Sugar extraction or hydrolysis/
saccharification, C6 fermentation,
distillation, final dehydration

From sugar based e.g.,
bagasse and vinasse
From starch based e.g.,
gluten, DDGSf biogas/
biomethane, technical
CO2

g

Process optimisation with regard
to e.g., upgrading stillages and
by-products

Commercial
TRL 9

38–450 MW 2,403 mn GJ
a−1 | 1,869
mn GJ a−1

179 mn GJ
a−1 | 123
mn GJ a−1

Bioethanol
(lignocellulose)

Lignocelluloses
(e.g., straw,
bagasse, wood,
switch grass)

Pretreatment (e.g., hydrolysis,
thermal, acid), saccharification,
C6/C5 fermentation, distillation,
final dehydration

Intermediatesh like
lignin, pentoses,
fertiliser biogas (P&Hi),
technical CO2

Upscaling, applications for lignin
(e.g., conversion to fuel, chemicals
or for P&H), pentoses, enzyme
use and efficiency increase

Demonstration
TRL 7

0.5–5 MW
(35–100 MW)

2,96 mn
GJ a−1 | n.a.,
often only
test
campaigns

0,51 mn GJ
a−1 | n.a.,
often only
test
campaigns

Synthetic
biomass-to-liquids
(BTL)

Lignocelluloses
(e.g., wood, straw,
mischanthus),
black liquor

Pretreatment (e.g., mechanical,
drying, pyrolysis, hydrothermal),
gasification, gas treatment,
synthesis (e.g., Fischer-Tropsch, FT),
hydrocracking, distillation,
isomerisation

From FT: waxes,
naphtha, P&H

Upscaling overall concepts but
downscaling of synthesis and
upgrading units Process
optimisation with regard e.g.,
to syngas treatment, efficiency
increase, final fuel treatment

Pilot for FT
fuels TRL 6

0.8–5 MW
(40–300 MW)

1 mn GJ a−1 |
n.a., often
only test
campaigns

No plants
running
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Table 1 Characteristics of selected biofuel options and their development status [2,5,11-13] (Continued)

Gaseous biofuels

Biomethane/biogas Residuese (e.g.,
biowaste,
manure, stillage)

Silaging, hydrolysis (optional),
anaerobic digestion, gas
treatment and upgrading

P&H, digestate,
fertiliser fractions

Process optimisation with regard
to e.g., methane yields, enzyme
use, gas treatment

Commercial
TRL 9

0.5–50 MW 60 GJ a−1 |
n.a.

38 GJ a−1 |
36 GJ a−1

(estimation)

Biomethane/
synthetic natural
gas (SNG)

Lignocelluloses
(e.g., wood and
straw)

Pretreatment (e.g., mechanical,
drying, gasification, gas treatment,
synthesis (methanation),
gas upgrading

P&H Upscaling, process optimisation:
with regard to e.g., syngas
treatment, efficiency increase,
adaption to decentralised concepts

Demonstration
TRL 7

1–10 MW
(20–200 MW)

Not realised
outside
Europe

0,092 mn
GJ a−1 | n.a.,
often only
test
campaigns

aUsually depending on process design.
bAccording to technology readiness level (TRL) of the European Commission, which outlines in detail the different research and deployment steps (1 = basic principles observed, 2 = technology concept formulated,
3 = experimental proof of concept, 4 = technology validation in lab, 5 = technology validation in relevant environment, 6 = demonstration in relevant environment, 7 = demonstration in operational environment,
8 = system completed and qualified, 9 = successful mission operations) [14].
cRelated to biofuel output—w/o brackets for current capacities, expected capacities in future in brackets (based on [5]).
dValues for 2012 or 2013; n.a.—no information available for biofuel production.
eMostly derived from sugar or starch-dominated substrates.
fStillage for DDGS (distiller's dried grains with solubles).
gTechnical CO2 can be used for food or chemical industries (e.g., CO2 for fizzy drinks and for synthesis).
hCan be used as feedstock for another process or upgraded further.
iP&H = (electrical) power and heat.
jOne example of this is methanol substitution through bioethanol.
kCo-refining in a mineral oil refinery.
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the energy balances related to the flow of raw materials
(Table 1, such as oil seeds or crops, cereals, lignocel-
lulosic wood chips or straw bales), auxiliaries with ener-
getic relevance (e.g., for gas upgrading) and process
energy that are supplied externally to the plant. The total
output energy includes the energy associated with the
main product (i.e. GJ of biofuel) and the energy associ-
ated with all other by-products (e.g., rape or soya extrac-
tion meal, glycerine, naphtha) including surplus process
energy (e.g., electrical power and heat that is generated
from exhaust heat or side streams out of the processes).
Residues and waste heat streams were not included in
the calculation [5]. The minimum and maximum values
for the overall energetic efficiency are summarised in
Figure 3 for the selected biofuel options and associated
raw materials.
As represented in available international publications,

for conventional biofuels like biodiesel and bioethanol,
specific raw materials (e.g., distinction between different
oil crops, sugar or starch biomasses) could be evaluated
(Table 1). For other options like hydrotreated vegetable
oils/hydroprocessed esters and fatty acids (HVO/HEFA)
as well as especially bioethanol and synthetic fuels based
on lignocellulosic biomass, this distinction is difficult.
Therefore, raw material classes were summarised. For
HVO/HEFA, this class is oil crops with palm on the lower
and rape on the upper level of the given bandwidth. For
bioethanol and synthetic fuels, it is lignocelluloses with
wood and straw as well as for biomethane/biogas different
silages (e.g., from maize or grass).
Keeping in mind the IEA road map, conventional bio-

fuels with a high technology readiness level (TRL) (Table 1),
such as biodiesel based on rape or soya and HVO/HEFA,
show the highest overall conversion efficiencies. Certain
bioethanol options (e.g. based on cereals and sugar beet)
also show high energetic efficiencies. Depending on the
0 10 2

Biodiesel (soya)

Biodiesel (rape)

Biodiesel (palm)

HVO / HEFA (different oil crops)

Bioethanol (wheat, rye, triticale)

Bioethanol (corn)

Bioethanol (sugar beet)

Bioethanol (sugar cane)

Bioethanol (lignocelluloses)

BTL /FT (lignocelluloses)

Biomethane / biogas (silage)

Biomethane / biogas (residues, biowaste)

Biomethane / SNG (lignocelluloses)

Energetic efficiency of biofuel pr

Figure 3 Comparison of energetic efficiency for biofuel production p
silage type, the biofuel production efficiencies for bio-
methane/biogas show a wide range. Similarly for biofuels
based on lignocellulose biomass with a comparably lower
TRL (Table 1), biomethane/synthetic natural gas (SNG) can
be produced very efficiently. However, it has to be noted
that the specific plant design, as well as the regional condi-
tions of a particular plant (e.g. raw material, by-products,
regional infrastructure), plays a decisive role.
In general, the conversion ratio of raw material to the

main biofuel product is the most important driver of the
plants' energetic efficiency. By-products (Table 1) were
also considered important to the overall biofuel plants'
efficiency; therefore, their energetic value was also con-
sidered in the calculation, independent of their further
use (e.g., as fodder or intermediate for the chemical
industry). This is especially true for biodiesel (e.g., ex-
traction meal and glycerine), bioethanol (e.g., DDGS, lig-
nin fractions) and biomass-to-liquids/Fischer-Tropsch
(BTL/FT) (e.g., naphtha). If considering the conversion
ratio from raw material to biofuel, the energetic gross
efficiency usually is quite lower compared to the overall
energetic conversion efficiency.
When viewing Figure 3, it has to be considered that

the values shown for comparison are across a mix of
technology designs and TRL levels, from new production
plants (also for conventional biofuels with high TRL), to
pilot stage plant concepts and theoretical expectation
plant concepts (e.g., for BTL and biomethane via SNG
with lower TRL) and all assumed at nominal load (i.e.
idealised operations). In reality, the values of such plants
in operation might be considerably lower.

Economic comparison—production costs
Without economic viability, market implementation of
biofuels is unlikely to be successful. To estimate more
detailed biofuel production costs, different parameters
0 30 40 50 60 70 80 90 100

oduction-range international publications in %  

lants (calculation based on data from [17-24]; cf. [5]).
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due to regional conditions and appropriate time hori-
zons have to be considered. The following parameters
are usually included: (i) capital expenditures (CAPEX;
including total capital investments, equity and leverage,
interest rates, life time of plant devices, maintenances),
(ii) variable operational expenditures (OPEX; raw material,
auxiliaries, residues, annual full load), (iii) fixed OPEX
(personnel, servicing, operation, insurances) and (iv) reve-
nues (e.g., for by-products).
Sensitivity analyses are carried out in order to have

a better understanding of the relative change of total
biofuel production costs and thus analyse uncertain-
ties. Usually, they show that besides the annual full
load hours of the plant, variable OPEX (especially raw
material) and CAPEX are of major importance (e.g.,
[11,25-27]).
Which variable OPEX factor plays the major role of

the overall biofuel production costs depends on the
overall plant design. It is well-known that conventional
biofuels like biodiesel and bioethanol primarily depend
on raw material costs. Often, market prices for raw mater-
ial and by-products correlate with each other as known
from conventional biofuels (e.g., oil seeds and extraction
meal, starch raw materials and DDGS, Table 1). For an op-
tion like bioethanol based on lignocelluloses, by-products
(e.g., lignin fractions and innovative products out of it)
also occur that often are innovative and for which market
prices are highly uncertain today. Moreover, the conver-
sion efficiency plays an important role for the costs as
well; biofuels with a high overall efficiency (Figure 3) show
the tendency to deal with a wider raw material cost range
than others. For lignocellulosic bioethanol also costs for
auxiliaries (especially for enzymes e.g., for hydrolysis) are a
sensitive factor. Concepts that require a lot of external
process energy also show a high OPEX share.
Total capital investments (TCI) are of crucial import-

ance with regard to financial risks and the CAPEX. Tak-
ing into account the state of technological development
(Table 1), there are different approaches used for calcu-
lating the TCI (e.g. so-called rough, study, or permission
estimations), all with different accuracies and financial
uncertainties [28,29]. For commercial concepts, approval
estimations can be used with an accuracy range of
5%–15% (+/−). Study estimations with an accuracy of
20%–30% (+/−) are often applied for concepts at pilot
or demonstration stage. Usually, there is a range of TCI
values for the different biofuel options (e.g. [5,11,30]),
which is primarily due to the influence of different plant
designs and regional conditions. However, there is a ten-
dency for biomethane and biofuels based on lignocel-
luloses towards increasing TCI values, due to the often
more complex technologies and plant designs and to the
higher associated capital risks, when compared to conven-
tional biofuels [5,26]. For the different plant units, specific
TCI values decrease with increasing plant sizes (effect of
economy of scale). But there is a continuous cost increase
in the engineering and construction industries that cannot
easily be reflected. The price development of chemical
facilities and machinery (including biofuel production
plants) is commonly indexed by means of the so-called
Chemical Engineering Plant Cost Index (CEPCI) or the
Kölbel-Schulze methodology [31]. According to Kölbel-
Schulze price index, the TCI has increased by about 6.5%
in the period 2010–2013 [32]. Biofuel options with high
TCI (especially bioethanol, biomethane and BTL) often are
associated with high CAPEX and are highly sensitive to
annual full load hours of operation.
Certain plant designs and overall concepts, as well as

different methodical approaches with different regional
frame conditions, time horizons, scenarios and cost pa-
rameters, make a comprehensive comparison of publica-
tions difficult. The literature reviewed for the economic
survey includes publications from the past seven years.
Therefore, in order to normalise the production costs
given in different currencies and for different years, the
values were first converted to EUR GJ−1 using the annual
average exchange rates [33]. After which, they were
normalised to the year 2013, by means of the cumulated
inflation rates (as annual average of the EU, [34]). The
range of available production costs for the different bio-
fuel options are presented in Figure 4. Moreover, values
published by DBFZ are indicated (e.g., white dot), which
were calculated for exemplarily overall biofuel concepts
for which detailed data (e.g., for mass and energy balances
and cost parameters) have been available with a com-
mon methodology (dynamic annuity approach) and basic
assumptions.
According to this, the lowest biofuel production costs

were associated with palm-based biodiesel and sugar
cane-based bioethanol. In comparison to conventional
biofuels, lignocellulosic-based biofuels are usually more
cost intensive. Especially for BTL fuels based on lignocel-
lulosic biomass (TRL of 6, Table 1), the range is especially
wide, which is primarily caused by many different concept
approaches and thus the assumptions behind. For ligno-
cellulosic bioethanol for instance (TRL of 7, Table 1), there
is the potential to develop overall concepts in such a way
that they could be produced at lower costs compared to
the conventional biofuels [38].
Considering the development of biofuel production

costs in the future, there are many other influencing
factors. For instance, the development of raw material
prices (usually commodities like cereals, oil crops or
lignocellulosic biomass) may be influenced by e.g. impacts
from climate change or productivity gains in agriculture
and crop losses. Also, the development of crude oil prices
is relevant and coupled to multifunctional dependencies
of input factors (e.g., the influence on raw materials, plant
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Biofuel production costs-range international publications in EUR GJ-1 

Figure 4 Comparison of biofuel production costs (based on [2,3,18,20,21,25,27,31,35-41]). White dots indicate cost values for exemplarily
concepts by DBFZ in [2,20,21,35,38,42]).
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devices and equipment, transport as well as their uncer-
tain dependencies amongst each other). Moreover, it has
to be noted that different market interdependencies
which have featured correlations in the past may not
show the same behaviour in the future due to a lack
of causality (spurious correlation). Cost reductions for
biofuels (especially regarding options with a lower TRL,
Table 1), effects of scaling and learning mainly depend on
the development of cumulated installed capacities and
utilised plant sizes. However, technology, regional factors
and point in time will be influential for that. This is also
true for political conditions and technological break-
throughs [37].
After pointing out the relevant variables involved in

the calculation and interpretation of economic trends
and data, in the end the overall economic efficiency of a
plant currently and in the future depends very much on
the plants' unique situation.

Environmental comparison—GHG performance
Biofuels are promoted as a better alternative to fossil
transport fuels, in order to reduce the GHG emissions of
the transport sector [43-46]. For this reason, GHG miti-
gation potential, relative to the fossil fuel it displaces, is
the most considered environmental performance indi-
cator of a biofuel. Life cycle analysis (LCA) is a method-
ology typically applied for estimating the potential GHG
emissions and mitigation potential of a biofuel chain
[47-51], across the whole spectrum of the biofuel supply
chain, from ‘well-to-wheel’ (feedstock production to util-
isation) or from ‘well-to-gate’ (raw material production
to biofuel produced). Biomass production and conver-
sion are in general associated with the highest emissions,
resulting in the reduced GHG mitigation potential of a
biofuel [52,53]. Some key drivers for calculating the
GHG emissions associated with these steps are outlined
in Table 2.
Biomass production is decentralised by nature [66,67]

and is quite often intrinsically linked to intense regio-
nalised agricultural production [68-70]; these biomass
cropping systems can vary extensively regarding man-
agement (e.g., fertiliser demand and rotations), growing
season, yields and system losses (e.g., ammonia volatilisa-
tion and run off); all these factors affect the associated
GHG emissions for biomass production [71]. In particular,
the application of nitrogen fertiliser for increased yields
and land use change (LUC) to produce more biomass can
contribute significantly to the GHG emissions of a biofuel
chain (Table 2). For most LCA studies, nitrogen fertiliser
application is found to contribute significantly to both
direct GHG emissions (e.g., field emissions) and indirect
(energy-intensive fertiliser production, e.g. Haber-Bosch
process) [72-75]. Modifying land utilisation or shifting in
land use patterns can alter soil carbon dynamics, poten-
tially resulting in either GHG saving or losses [76-81].
This can also contribute to direct or indirect emissions
of a biofuel chain. However, uncertainties remain for
determining the appropriate means of calculating and
accounting for the associated emissions from both fertil-
iser application and LUC (Table 2).
The GHG emissions from biomass conversion to

biofuels are driven by the use of auxiliary materials
(e.g., process chemicals), process heat (from both the
production of the energy carrier used for heat supply
(e.g., natural gas) and from the heat production itself
(e.g., burning of the natural gas)), as well as power (e.g.,
electricity from the public grid) required for processing
biomass. Upstream emissions contribute significantly to
the emissions associated with the use of auxiliaries, heat
and electrical power. Therefore, due to the often complex



Table 2 Overview of drivers of GHG in biomass production and biofuel conversion systems and associated
uncertainties in accounting for these drivers within the LCA method

Pathway step Drivers of GHG emissions Relevant aspects Uncertainties related to drivers

Biomass production

Oil, sugar, starch, lignocellulosica dLUC/iLUCb Change in carbon stocks [54,55] Carbon inventory

Lack of primary data

Biomass management practices
for increased yields [52,56]

Nitrogen (N) fertiliser use and
N losese [57-62]

Amount of N2O releasesh associated
with parameters mentioned [58]

Cultivation and transport [18] Fuel consumptionf Parameters influencing fuel
consumption

Soil compaction [63] Lack of primary data/site specificity
for soil compaction and GHG
emissions

Biofuel conversion

Biodiesel, HVO/HEFA, bioethanol,
BTL/FT Biomethane

Energy consumption Upstream emissions from fossil
and renewable energy chainsg

Uncertainties related to the emission
factors for energy productioni

Auxiliary materialsc Upstream emissions due to the production
of required chemicals/catalystsg

Use of generic values taken from
available databases e.g., Ecoinvent
[64], NRELj

Overall conversion efficiencyd The overall efficiency of the biomass used
has an impact on the upstream emissions
from biomass production per MJ of biofuel

Uncertainties related to data
availability for the assessment of
advanced biofuel technologies [56]

aLignocellulosic raw materials, cf. Table 1.
bLand use change occurs when areas not used for agricultural purposes (e.g., forest areas and grasslands) are converted to produce biomass, indirect LUC (iLUC)
can occur when existing agricultural areas and non-agricultural areas are converted to other crops/land uses to meet demands for increasing demands for bioenergy
and agricultural products [65].
cAuxiliary materials (e.g., process chemicals and catalysts).
dCf. Section 3.
eN fertiliser use refers to type of fertiliser used e.g., calcium ammonium nitrate or urea.
fVariability in fuel consumption due to soil conditions at harvesting, machinery used, field structure, distance to intermediate storage or bioenergy plant, etc.
gThe term upstream emissions refer to the emissions associated with the production and provision of the energy carriers or materials used (e.g., emissions from
the production of electricity provided via the public grid and used in the biomass conversion process).
hThe amount of N2O emitted from biomass production depends on a number of parameters such as, type of fertiliser, application technique and time, crop
rotation systems, climate, soil types, etc..
iUncertainties associated with the upstream emissions from the production of the energy used for conversion processes (e.g., electricity from public grid) refer to
the many different processing scales and technologies involved.
jUncertainties in relation to data/data sources available on the various drivers and relevant aspects. NREL, National Renewable Energy Laboratory.
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global production networks involved in producing such
auxiliaries, energy carriers and grid energy, the calculated
upstream GHG emissions are associated with a number of
uncertainties (Table 2) [82].
In spite of all uncertainties and debates, LCA calcula-

tions provide a valuable indication of the global warming
potential [83] and GHG mitigation potential of a biofuel.
In relation to these calculations and as pointed out in
the previous sections, the plant concepts for each biofuel
pathway are unique to each individual plant and regional
conditions. Accordingly, LCA studies for a particular
biofuel are also unique, depending on the specific re-
search question or context of the study (goal and scope),
the assumptions made (e.g., system boundaries, cut-off
criteria, allocation of by-products) as well as the spatial
and temporal characteristics of the processes assessed.
While this is very important for making the assessment
of the particular case study, it makes the results from
different LCA studies difficult to compare [48]. There-
fore, care must always be taken when comparing across
different conversion pathways, particularly when drawing
comparisons across current biofuel options with a high
TRL (e.g., rapeseed biodiesel) with advanced or future
biofuels with a lower TRL (e.g., BTL), for which cur-
rently no real plant operational data is available. The
ranges of GHG emissions found in the literature for the
selected biofuel options in this study are outlined in
Figure 5. Each LCA study used to show this range are
case specific, as they all refer to specific facilities designs
and configurations.

GHG mitigation costs
Various regions and countries are currently promoting
the use of biofuels. Often, mandatory quotas and blend-
ing targets are used as supportive political instruments
to achieve defined biofuels targets. While most policy in-
struments are aiming at energetic targets for biofuels,
environmental characteristics are becoming more relevant
in some regions (e.g. in Europe). One country in particu-
lar, Germany, will introduce a GHG-related biofuel quota
in the year 2015 [9]. Therefore, it is plausible due to this
policy alteration; GHG mitigation costs may become one



Figure 5 Comparison of GHG emissions (based on [9,11,15,18,23,24,37,52,84-86]). White dots indicate the default values for the biofuel
pathways included in Annex V of the EU Directive 2009/28/EC [7]—rape seed biodiesel for biodiesel (different oil crops), rapeseed HVO for
HVO/HEFA (different oil crops).
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of the most important benchmarks for biofuel producers,
in order to establish their competitive edge over other
biofuel options on the German market, or indeed being
introduced to the German market.
The term GHG mitigation costs represents the add-

itional costs requirements for the production of a biofuel,
in order to have a unit reduction in GHG emissions (in
well-to-wheel terms) in comparison to its fossil equivalent
(Figure 5). This parameter, although associated with vari-
ous uncertainties, as outlined in the previous sections,
could be very useful when estimating the cost of avoiding
the global warming potential of fuels.
Combining the three aspects outlined in this paper,

technical efficiency, cost and GHG mitigation potential,
a very simple approach was taken to estimate the poten-
tial GHG mitigation costs presented in Figure 6. These
calculations are based on the standard GHG emission
value provided in Annex V of the EU (RED) Directive
2009/28/EC for each specific biofuel option [7,9]. The
default value for a specific biofuel option can be used
by biofuel producers to calculate the GHG mitigation
potential of their fuel relative to a fossil equivalent;
therefore, it seemed fitting to use these default values
in the calculations presented in this paper. The default
values are also shown within the GHG ranges outlined in
Figure 5 to indicate where these default values fell in the
range of the literature selected for this study. The range of
costs associated with producing a particular biofuel was
taken from the studies outlined in Section Economic
comparison—production costs and also include DBFZ
own values (Figure 4).
The fossil comparator used for the calculation was

assumed to be a mixture of gasoline/diesel, in a ratio of
35%–65%, (based on the fuel consumption for the trans-
port sector in Germany according to [87], with a GHG
value of 83.8 kg CO2eq. GJ

−1 according to [7]. The average
product price (excluding any taxes) of 16.7 EUR GJ−1 for
2013 was calculated, considering the mentioned fossil fuel
mixture based on [88,89].
With regards to Figure 6, only the ranges should be

considered and not the absolute values, as these are only
to provide an indication of potential GHG mitigation
costs, in reality as outlined in Section Economic com-
parison—production costs; calculations based on actual
detailed values from biofuel producers could differ from
those presented here. A negative GHG mitigation costs
could also theoretically result from those biofuel options
which have lower production costs and GHG emissions
than that of the fossil equivalent.

It is likely with a GHG-based biofuel quota, biofuel
options with the lowest GHG mitigation costs will be sold
to the market first
According to the DBFZ-derived values, the biofuels which
show a good mitigation cost potential are soya-based
biodiesel, sugar cane-based bioethanol, biomethane, palm-
based biodiesel and corn bioethanol. Lignocellulosic bio-
ethanol might have comparable GHG mitigation costs like
corn bioethanol and rape-based biodiesel. However, this
can be explained mainly by the rather low GHG default
value for lignocellulosic bioethanol (compared to the lit-
erature values indicated in Figure 5). Options like HVO/
HEFA, BTL and cereal-based bioethanol show comparably
higher GHG mitigation costs. This is caused by compar-
ably higher TCI, and in the case of bioethanol, raw mater-
ial prices are also a factor.



Figure 6 GHG mitigation costs. White dots indicate the reduction costs calculated with the RED default values and the cost values published by
DBFZ (indicated as white dots in Figure 4; please note that there is no DBFZ value for soya biodiesel). *No GHG standard values according to RED [7].
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Discussion and conclusions
The aim of this article was to provide an overview of the
most relevant criteria for comparing biofuel options out-
lined in the IEA biofuels roadmap. Each of these biofuel
options has its own particular characteristics from typ-
ical raw materials, to conversion processes, by-products,
as well as their state of technical development and various
R&D challenges.
The development of biofuel technologies and their

market implementation is highly dependent on specific
policy conditions. In fact, despite their specific fuel prop-
erties (e.g. with regard to drop in use in the different
transport sectors and standards), important indicators to
assess the potential success of a biofuel in the market
relate to its overall production costs and GHG mitiga-
tion performance, which are amongst others, driven by
energetic efficiency and biomass-to-biofuel conversion
efficiency.
The combination of these aspects to estimate the

potential GHG mitigation costs of a biofuel may also be
an important benchmark for biofuel producers in Germany
from 2015 onwards. The introduction of a GHG-based
quota could result in GHG mitigation costs being an
important driver for market sale. Consequently, biofuel
options with the lowest mitigation costs will enter the
market first.
From the results presented in this paper, no clear

conclusion can be made to indicate a ‘champion’ biofuel
option, with regard to high overall energetic efficiencies,
low cost and low GHG emissions. It is difficult to effect-
ively state one biofuel option is better than another, as
each biofuel plant has its own specific plant design and
unique set of regional conditions (e.g., raw material, auxil-
iaries and infrastructures), by-products; therefore, an ap-
propriate comparison needs to somehow account for all
these variances. Furthermore, the decarbonisation strategy
of the EU and national approaches such as the German
GHG quota are introducing incentives to optimise existing
and future biofuel options. A direct comparison of biofuels
based on current literature values can therefore only be
seen as a starting point to consider these new incentives
on the investigated indicators (e.g., GHG emissions).
It is very difficult to benchmark a biofuel within a mar-

ket sector that is constatnly undergoing changes. The bio-
fuel market is very sensitive to global and regional policy
e.g. targets for renewable fuels until 2020 and beyond, as
well as market interventions such as subsidise and support
schemes. One major contributor to fluctuating market
conditions is the price developments of mineral oil and
this is a key consideration in the bench mark of a biofuel.
There is also the challenge of societal acceptance, which
leads invariably to further market variability. However,
there is ever increasing attention being given to biorefin-
ery concepts, which are promoted to maximise biomass-
to-products ratio, as biorefineries are multiproduct facil-
ities (e.g. biofuels, bulk chemicals, feed and food, energy).
Through the diversification of biomass-based products,
such plants may not be so susceptible to market shifts.
Referring to the sector of application (here energy or

transport sector), GHG mitigation costs might become
one of the most important factors describing the com-
petitiveness of a biofuel in future markets. Since biofuel
production costs are mainly driven by raw material prices
with rather low reduction potentials, the optimisation of
biofuel production with regards to GHG emissions will be
a decisive aspect for the future of current biofuel options
such as biodiesel (e.g. from vegetable oils).
While the GHG cost mitigation is a good start to com-

bining the environmental and economic benefits of the
different biofuel options, it has to be noted that focusing
only on GHG mitigation potential may lead to a shifting
of the environmental burdens for producing one GJ of
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biofuel to cause other environmental and ecological
impacts [90], such as eutrophication and biodiversity
loss [91-93], thus effectively counteracting the whole
principle of conducting LCAs in the first place. As is the
case with all the indicators outlined in this paper, the
greatest challenge in the future will be to include and inte-
grate the complexities associated with biofuel production,
to include more complex aspects such as regional and
spatial impacts [90,94-100], biodiversity [91-93] and socio-
economic impacts [93] and to avoid the shifting of envir-
onmental burdens in a cost-effective manner, including
more regional and spatial aspects. However, the appli-
cation of a GHG mitigation cost potential could be the
start along the road which leads to the development of
effective assessments.
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