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Abstract 

Background In addition to the other uses for macroalgae, since the 1970s, there has been interest in using macroal-
gae as a source of biofuels, due to the high rates of productivity and intrinsic advantages over other biofuel crops 
such as not requiring land use or significant freshwater input. A wide range of conversion processes exist but anaero-
bic digestion was one of the first demonstrated and is still a widely proposed conversion pathway. To be economically 
viable and scalable within Europe, the industry will need to be based on a small number of fast growing, high-yielding 
European macroalgae species. There is a wide body of scientific work on the conversion of seaweeds to biofuel 
via anaerobic digestion.

Main text These studies demonstrate that the efficiency of this conversion pathway is highly variable between spe-
cies, processing techniques, composition and digestor conditions. In this paper, we review this body of work 
specifically linking it to candidate species for European macroalgae bio-energy cultivation with the aim to pro-
mote the future development of the European macroalgal cultivation sector and allow for a better alignment 
with the requirements for biofuel production from macroalgae.

Conclusions Overall, anaerobic digestion of seaweed offers opportunities for large-scale energy production which 
avoids some of the issues that have faced previous generations of biofuels, but there are a number of key challenges 
to overcome to ensure wider adoption and economic viability. (1) Optimising the biomass production to ensure 
an economic and uniform feedstock with the composition optimised to increase desirable characteristics such 
as sugar content and the carbon and nitrogen ratio and to reduce inhibitory factors such as halogenated secondary 
metabolites, sulphur and heavy metals. (2) Improving conversion rates through co-digestion, pre-treatments and tai-
lored microbial communities, using scalable and economically feasible technology. (3) Developing tailored microbial 
communities capable of utilising the diverse polysaccharides in seaweed feedstock and being tolerant of the saline 
conditions associated with them. Addressing these issues will deliver significant benefits towards the development 
of a bio-energy industry based on the anaerobic digestion of cultured seaweeds.

Background
Worldwide, there are more than two hundred seaweed 
species with commercial value; however, only about ten 
are intensively cultivated [1]. In 2018, farmed seaweed 
represented 97.1% by volume of the total of 32.4 mil-
lion tonnes of wild collected and cultivated aquatic algae 
combined. According to data from the Food and Agri-
culture Organisation [2], the world production of marine 
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macroalgae has more than tripled, up from 10.6 million 
tonnes in 2000 to 32.4 million tonnes in 2018. Seaweed 
farming is practised in a relatively small number of coun-
tries, dominated by countries in East and Southeast Asia. 
European macroalgae farming is currently at the nascent 
stage but has the potential to grow to 8 million tons per 
year by 2030 with positive environmental and socio-
economic benefits [3]. While food use currently drives 
demand, macroalgae has received significant interest as 
a biomass feedstock. The use of macroalgae to produce 
biofuels is widely recognised as having advantages over 
terrestrial biomass [4]. There has been a surge in research 
interest in the use of macroalgae as an alternative feed-
stock to food crop-based starch and lignocellulosic 
biomass. This is mainly due to fast growth rates of mac-
roalgae, high potential biomass yields, high carbohydrate 
content and nutrient requirements that can be fulfilled 
by wastewater or seawater [5]. Guo and McKinley [6] 
stated that cultivated yields of Saccharina japonica were 
6.5 times more productive than sugarcane based on a wet 
tonnes per hectare per year basis (t  ha−1  a−1 wet weight) 
but this did not compensate for difference in dry matter 
content between the feedstocks. For European kelp culti-
vation, a more realistic productivity of approximately 120 
tonnes wet weight per hectare can be expected [7] with 
a dry solids content of 10%, which is roughly equivalent 
to European terrestrial crops on a per area basis [8]. Bio-
mass yields of seaweed species can vary depending on 
species, seasonal and geographical variation, and grow-
ing conditions [9], with yields per unit area often greater 
than that of terrestrial plants [10]. The economics of bio-
fuel production requires reliability of quality and quan-
tity of feedstock that makes aquaculture production a 
preferred choice to build a scalable industry compared to 
wild harvest of seaweeds. However, there are only a lim-
ited number of species which are likely to be economi-
cally viable as a feedstock for biofuel production due to 
their high productivity, fast growth and high polysac-
charide content [11]. As such, this review will focus on 
candidates for European aquaculture production, pri-
marily brown phaeophyte macroalgae, commonly known 
as kelp, in the context of the wider European macroalgae 
landscape.

The need to develop sustainable and economically 
viable alternatives to traditional fossil-based fuels is 
now greater than ever due to the increasing threat of 
global warming, political pressure to reduce greenhouse 
gas emissions, energy security, concerns over fossil fuel 
depletion and volatile oil prices [12, 13]. Biofuel tech-
nologies have developed extensively over the last 50 
years, mainly due to abundant feedstock availability and 
established biofuels conversion technologies  [14]. Ini-
tial advances were led by sugarcane ethanol in Brazil in 

the 1970s, and more recently expanded to ethanol and 
methane production in the US and Europe via starch 
conversion and anaerobic digestion. The World Biogas 
Association states that anaerobic digestion has the poten-
tial to reduce global greenhouse gas emissions by 10–13% 
[15].

Biofuels and biomass derived energy can be divided 
into several generations, depending on the biomass feed-
stocks and the processing technology.

• First generation (1G) biofuels are associated with 
the conversion of food crops like wheat, corn, maize, 
rice, sugarcane, rapeseed among others, as energy 
sources. These biomasses have high sugar, starch or 
oil content [16].

• Second generation (2G) biofuels are derived from 
non-food wastes and lignocellulosic biomass that are 
generated as agriculture and forestry by-products. 
The main constraint with second generation feed-
stocks resides in the complex internal structures due 
to the presence of lignin that may hinder cellulose 
and hemicelluloses accessibility [17].

• Third generation (3G) biofuels feedstock derived 
from micro- and macroalgae are emerging as a 
renewable fuel source due to fast growth rates, 
potential for high biomass yields, low lignin content, 
high carbohydrate content, no competition for agri-
culture land and higher rate of  CO2 fixation than land 
crops [4, 18, 19].

• Fourth generation (4G) feedstock employs genetically 
modified algal biomass to obtain better hydrogen to 
carbon yields. They are expected to be carbon nega-
tive both at the level of the raw material and process 
technology [20].

Third generation biofuels from macroalgae are receiv-
ing increasing attention due to high biomass production 
per unit area facilitating process intensification [21], and 
the additional benefits of not competing with agricul-
tural crops for land or freshwater and with high polysac-
charide content [11]. Macroalgal forests are estimated to 
naturally cover  6.1–7.2 million  km2 [22] across the globe, 
as shown in Fig. 1, out of a potential 48 million  km2 suit-
able for macroalgae [23] allowing for the development of 
large scale aquaculture with minimal competition with 
existing natural habitats. In seaweed aquaculture, growth 
is dependent on the presence of suitable physical and 
chemical conditions and the selection of cultivation sites 
with suitable characteristics is essential for the success-
ful establishment. Growth conditions of a site directly 
impact biomass yield and the composition of the crop 
which in turn controls the conversion efficiency of bio-
mass to bioenergy [11]. The cultivation of macroalgae 
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combined with fish and shellfish farming in the form of 
integrated multi-trophic aquaculture systems (IMTA), 
both onshore or offshore, can provide a more sustainable 
and significant source of seaweeds [24]. The integration 
of seaweed culture into fish farms reduces the environ-
mental impact as fish farm nutrients can be sequestered 
by cultured seaweed which can subsequently be used as 
feedstock for biofuel production [17]. Detritus from sea-
weed farming results in additional carbon sequestration 
compared to the seaweed biomass through the incom-
plete degradation of detritus in marine sediments [25, 
26].

Main text
Converting algal biomass to energy
Conversion methods of algae biomass include biotech-
nological conversion—anaerobic digestion (biogas/
methane), fermentation (bioethanol) and photobiological 
production of hydrogen; chemical conversion—extrac-
tion and transesterification (biodiesel) [19]; thermo-
chemical conversion—gasification (syngas for heat and 
power generation), liquefaction (bio-oil/liquid fuel), 
pyrolysis (production of liquid bio-oil, syngas and char-
coal), aqueous catalysis (biofuel precursors) and direct 
combustion (heat energy) [1, 10, 18, 19, 28–30]. For 
thermochemical conversion of seaweed, the presence 
of alkaline earth-metals in macroalgae, such as Mg and 
Ca, which have shown to promote decarboxylation over 

dehydration during gasification and pyrolysis improv-
ing hydrogen yields compared with terrestrial crops [31, 
32]. However, gasification and pyrolysis processes require 
dry feedstocks with moisture contents less than 10%. 
Philippsen et al. [33] found that the use of non-renewa-
ble heating sources for drying seaweeds to less than 20% 
moisture had an energy return on investment (EROI) of 
less than 1. Similarly, Milledge et al. [34] noted that the 
most difficult challenge with valorising macroalgae is the 
high-water content (> 90%) requiring either drying or 
dewatering with high associated energy costs. Inherently 
wet valorisation methods for seaweed include fermenta-
tion, catalysis for platform chemicals, hydrothermal car-
bonisation for hydrochar and bio-oil as well as anaerobic 
digestion for biogas. The EROI for ethanol fermentation 
from seaweed has been estimated as low as 1.78 with an 
EROI of 3 considered sustainable for bioenergy produc-
tion. Brown et al. [35] estimated that integrating hydro-
thermal carbonisation with anaerobic digestion would 
result in an EROI of over 11. Though, the high K, Cl and 
S contents of the hydrochar make combustion technically 
challenging.

Among the most energy efficient pathways to acquir-
ing biofuel from macroalgae is employing inherently wet 
processes such as anaerobic digestion to produce biogas 
with an EROI exceeding 3 [36, 37]. The production of 
biogas through anaerobic digestion provides substan-
tial benefits over other types of bioenergy production 

Fig. 1 Distribution of existing global marine macroalgae forests [27]
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by trading reduced process inputs for slower conversion 
rates. Anaerobic digestion is an established technology 
and is considered a good method of choice for biomass 
such as seaweed that has a high-water content [34, 38, 
39]. Anaerobic digestion is the anaerobic decomposition 
of biomass materials by symbiotic microbial processes 
into biogas. Biogas is a renewable gaseous fuel gener-
ated by anaerobic digestion of organic wastes and typi-
cally consists of 50–70% methane  (CH4), 30–45% carbon 
dioxide  (CO2) with trace impurities of < 2% hydrogen 
 (H2), < 3.5% hydrogen sulphide  (H2S), nitrogen  (N2) and 
is saturated with water vapour according to the reactor 
temperature and pressure [40, 41].

The degradation of macroalgae during anaerobic diges-
tion occurs in individual steps carried out by different 
microorganisms, as shown in Fig. 2 [42]. Degradation is 
carried out by a complex microbial consortium in a four-
stage process comprising:

(1) Hydrolysis—anaerobic bacteria such as Bacterio-
cides, Clostridia, Bifidobacteria, Streptococci and 
Enterobacteriaceae hydrolyse complex organic 
macromolecules into smaller, simpler molecules, 
e.g., carbohydrates to sugars, proteins to amino 
acids and lipids to fatty acids.

(2) Acidogenesis—acidogenic bacteria convert sim-
ple organic molecules to intermediate volatile fatty 
acids such as propionic and butyric acid in addition 
to hydrogen, carbon dioxide and lesser amounts of 
other metabolites, including ammonia, lactate and 
ethanol.

(3) Acetogenesis—acetogenic bacteria convert volatile 
fatty acids primarily to acetic acid, along with addi-
tional hydrogen, ammonia, and carbon dioxide.

(4) Methanogenesis—methanogenic archaea form 
methane via the anaerobic respiration of acetic acid 
and via the conversion of hydrogen and carbon 
dioxide by hydrogenotrophic archaea.

Various operational and environmental parameters 
affect anaerobic digestion, which correlate with the kinet-
ics of the different digestion stages and biogas produc-
tion [43]. The optimised process performance depends 
upon the balanced activity of each set of microbial con-
sortia. If one stage, such as acidogenesis works too fast 
causing acidification, the other stage, such as methano-
genesis due to their preference for higher pH, becomes 
rate limiting and vice versa. Methanogenesis is a critical 
step in the entire anaerobic digestion process as it is the 
slowest biochemical reaction of the process and under 

Fig. 2 Simplified schematic representation of the processes and microorganisms involved during anaerobic digestion of seaweed biomass. 
Schematic adapted by Nielsen et al. (2020) [41] from Maneein et al. (2018) [39]
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most circumstances may be considered the rate limiting 
step of the overall reaction [40, 44, 45]. Slowly degrad-
ing substrates such as cellulose, fats, and proteins can 
make hydrolysis the rate limiting step instead. While 
deficiencies in macronutrients, such as nitrogen, phos-
phorus, potassium, calcium, magnesium and sodium, or 
trace elements, such as cobalt, iron, nickel, selenium and 
molybdenum, can limit microbial growth at any stage of 
the process they are thus are critical for the stable and 
optimum performance [4]. The optimisation of anaerobic 
digestion requires careful consideration of all constituent 
fractions to improve biogas yields as well as reduce oper-
ating and capital costs [46].

Macroalgae sources and composition
Macroalgae are classified into three main phyla; Rhodo-
phyta (red algae), Phaeophyta (brown algae) and Chlo-
rophyta (green algae), depending on their chemical 
composition and evolutionary history [47]. In general, 
Rhodophyta is a phylum containing the highest num-
ber of species (approximately 6000 known species), fol-
lowed by Chlorophyta and Phaeophyta with about 4500 
and 2000 identified species, respectively [48]. The relative 
quantities of proteins, lipids and carbohydrates present 
in seaweed affect methane production potential and vary 
by species, season and production location [49]. Relative 
to terrestrial biomass, macroalgae have higher water and 
ash fractions, and less lignin relative to structural car-
bohydrates. Lipid fraction is generally smaller than in 
many microalgae but can be as high as 20% dry weight, 
while protein concentration is highly variable but can 
be nearly 50% of the dry mass in some cases. The high 
carbohydrate fraction includes a large variety of easily 
soluble saccharides, such as laminarin, mannitol (brown 
seaweeds), starch and mannan (green seaweeds) and car-
rageenans (red algae). Volatile organic compounds also 
play an essential role in chemical communications in 
macroalgae [50]. This can include terpenoids, furans, sul-
phur compounds, alkanes, alkenes, alcohols, aldehydes, 
ketones and esters that are affected by environmental fac-
tors, such as temperature, light, nutrition conditions and 
abiotic stresses [51]. The volatile solid content as a per-
centage of dry solids in brown and red seaweeds ranges 
from 44.6% to 73.8% compared to green seaweeds from 
57% to 82.1% [52]. Despite the huge variety of seaweed 
species, less than 20 are relevant in terms of commercial 
cultivation [53]. Across Europe, several species have been 
successfully farmed on a “trial scale”, including red sea-
weeds such as Palmaria palmata, Asparagopsis armata 
and Porphyra umbilicalis as well as the green seaweed 
Ulva sp. [54]. However, by far, the most success has been 
achieved with brown seaweeds, primarily Alaria escu-
lenta, Laminaria digitata and Saccharina latissima. 

Combined in part due to their suitability as a biofuel 
source and successful farming trials [11], kelps are the 
most advanced seaweed phyla for large-scale production 
in Europe [55]. In the broader context of the European 
seaweed sector, green and red seaweeds may play a large 
part of the bioenergy sector in the future, though brown 
seaweeds should remain the primary focus for bioenergy 
and for anaerobic digestion.

Carbohydrates
Marine algae contain large fractions of polysaccharides, 
notably structural carbohydrates in the cell wall, but 
also myco-polysaccharides and storage polysaccharides 
that have numerous commercial applications as stabilis-
ers, thickeners, emulsifiers and food [56]. Structural car-
bohydrates range between 30% and 50% of dry mass in 
brown algae, 30–60% in red algae and 25–50% in green 
algae [10]. This variation in composition allows a range of 
industrial applications. Furthermore, low lipid and high 
carbohydrate contents make specific macroalgae good 
candidates for alcohol-based fuels. The composition of 
the three phyla can be broadly summarised as

• Red macroalgae composition varies with species but 
generally consists of glucose-derived cellulose and 
galactose polysaccharides [57]. The cell walls contain 
two types of galactan long-chain polysaccharides, 
agar and carrageenan, which are valuable thickening 
agents used commercially in the food industry.

• Green macroalgae are mainly composed of cellulose 
and pectin, the main structural polysaccharides, in 
the cell wall in addition to starch as a food reserve 
[48].

• Brown macroalgae contain cellulose, alginate and 
fucoidan, as important structural polysaccharides 
that provide mechanical strength to cell walls. Stor-
age sugars, laminarin and mannitol, can be consti-
tuted up to 55% of dry weight. Laminarin is a car-
bohydrate that can be hydrolysed into glucose by 
laminarase [endo-1,3(4)-b-glucanase] [58], while 
mannitol is a sugar alcohol that can be directly uti-
lised by bacteria.

Protein
The protein content of seaweeds varies substantially 
more between the species of seaweeds within the tax-
onomic groups (red, green or brown seaweed) than 
between the taxonomic groups [47]. Typically, red and 
green varieties of seaweed are more protein-rich than 
brown, whereby red seaweeds species such as Porphyra 
tenera, Palmaria palmata and Gracilaria spp. contain 
some of the highest protein levels, at 47%, 35% and 33 
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wt.%, respectively. [59, 60]. Similarly, green seaweeds, 
such as Ulva spp., show protein levels of up to 35% dry 
weight. These levels are comparable to those found 
in high-protein crops such as soybeans that contain 
around 35 wt.% [61]. Brown seaweeds generally contain 
the lowest protein contents of the taxonomic groups, 
with the highest protein content of 24% noted in Unda-
ria pinnatifida. Seasonal factors can affect the protein 
content in the fronds of seaweed species. For example, 
Saccharina sp., Laminaria sp. and Alaria esculenta 
were shown to have maximum levels during the period 
February to May, with the younger parts of the fronds 
of Saccharina and Laminaria being considerably richer 
than the older parts [62]. Curiously, despite the high 
sulphur content normally associated with seaweed, 
sulphur-containing amino acids are normally under-
represented [63].

Lipids
Lipids are a broad group of naturally occurring mole-
cules that includes fatty acids, oils, fats, waxes, sterols, 
phospholipids, fat-soluble vitamins (such as vitamins A, 
D, E and K), mono-, di-, and triacylglycerols [60]. Major 
biological functions of lipids include energy storage, 
signalling and metabolic regulation and their role as 
structural components of cell membranes, lipid levels 
in macroalgae are species-specific and can range from 
less than 1% up to 20% of dry matter depending on sea-
son, environment, and age and growth stage of seaweed 
species [64]. Some species contain higher levels, such 
as green seaweed Ulva rigida at 12% and brown sea-
weed Dictyota spp. ranging from 12% to 20%. Kim et al. 
[65] reported that the maximum lipid content of fronds 
in Saccharina sp., Laminaria sp. and Alaria esculenta 
was generally found in winter, whereas the total lipid of 
Fucus sp. were most abundant in summer, with highest 
levels recorded in August. Furthermore, the composi-
tion varies within a single seaweed plant depending on 
the tissue that is sampled. A study by Tabassum et  al. 
[66] on biomethane production in brown seaweeds by 
A. nodosum, L. digitata, L. hyperborea, S. latissima and 
Saccorhiza polyschides showed significant variation in 
proximate, ultimate and biochemical composition of 
different parts of the thalli, i.e., stipe, bladder, frond 
and holdfast. The highest biomethane potential of 286 
L  CH4 kg  VS−1 was obtained from the stipe of L. digi-
tata and the lowest value of 118 L  CH4 kg  VS−1 from 
the holdfast of L. hyperborea. Accumulation of salt in 
the holdfast meant that biomethane performance was 
reduced compared to the stipe and frond parts of the 
thalli. Results showed that the most significant part for 
seaweed biogas production was the frond.

Macroalgae characteristics and effects on anaerobic 
digestion
The chemical composition of seaweed feedstocks differs 
markedly, as shown in Table 1, and the amount of maxi-
mum biomethane potential varies from one substrate 
to another. Several factors affect the potential of feed-
stocks for biomethane production. Important feedstock 
parameters include: total solids (TS) and volatile solids 
(VS) content, nutrient content, carbon fraction, carbon-
to-nitrogen ratio (C/N) and the presence of inhibitory 
substances [50]. This is particularly true for the digestion 
of cultivated macroalgae due to variations in their com-
position between species, locations and time of harvest 
[67]. Storing seaweed harvests via ensiling can reduce 
the compositional variation through the year, though 
still results in higher variation in composition compared 
to terrestrial crops, which must be considered for com-
mercial applications [68]. It should also be noted that 
the macroalgae polysaccharides of alginate, carrageenan 
and laminarin are composed of repeating uronic acids. 
Uronic acids differ in structure to that of simple sugars 
in that the hydroxyl group furthest from the carbonyl 
group has been oxidized to a carboxylic acid. Enzymatic 
hydrolysis of uronic acid-containing polysaccharides, 
therefore, requires a neutralising group for carboxylic 
acid group to facilitate glycosidic bond cleavage [69]. As 
such, different microbial functionalities are required for 
their hydrolysis into monomers for further conversion, 
which is considered a major limitation of macroalgae 
anaerobic digestion [34]. For instance, carrageenan and 
fucoidan contain sulphate ester groups that require spe-
cialised desulphatase enzymes to remove sulphate groups 
before polysaccharide hydrolysis can occur [70]. This low 
biodegradability using terrestrial inocula is not limited 
to the solid polysaccharide fraction. Salgado-Hernandez 
et  al. [71] found that the biodegradability index of the 
liquid fraction of only 39% compared with the solid frac-
tion of 25%. The low biodegradability of seaweed has also 
been attributed to a combination of inhibitors present 
in seaweed, including but not limited to sulphur com-
pounds, phenolics, halogenated hydrocarbons, high salt 
contents and heavy metals [72].

Carbon/nitrogen ratio
The molar compositional ratio of carbon to nitrogen 
(C/N ratio) in a feedstock is one of the most important 
parameters for assessing feedstock suitability for anaero-
bic digestion due to its effects on the stability of anaerobic 
digesters and the maximising of methane output. Nitro-
gen is essential for the microbial production of proteins 
and enzymes and insufficient quantities (high C/N ratio) 
lead to a nutrient-limited environment with reduced 
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methane yields. Excess nitrogen (low C/N ratio) inhibits 
methanogens by high ammonia concentrations due to 
the degradation of the protein-rich feedstocks [79]. The 
manageable C/N ratio for anaerobic digestion is consid-
ered to be in the range of 20–30, with an optimum at 
around 25 [40]. Seasonal variation in the protein content 
leads to increased N and lower C/N ratios during winter 
and spring, while rising as summer progresses from May 
to August [17]. Brown seaweeds have a low concentration 
of protein, with a C/N ratio of 26 having been recorded in 
A. nodosum, 24 in S. latissima, 21 in Himanthalia elon-
gata [52], 22 for S. muticum [80], 27 for L. digitata and 
23 for Saccorhiza polyschides. U. lactuca has a C/N ratio 
of 10–20 in nature dependent on season but can be cul-
tivated to obtain a ratio of more than 30 [81]. In a study 
by Bruhn et al. [82] U. lactuca was cultivated in Saccha-
rina sp., Laminaria sp. and Alaria esculenta in ponds and 
it was found that the C/N ratios varied from 7.9 to 24.4. 
A controlling factor in the C/N ratio was suggested as 
incoming irradiance, with more light causing seaweed 
to accumulate more carbon and carbohydrates leading 
to an increase in the C/N ratios. The authors found that 
nitrogen-starved U. lactuca produced more biomethane 
than nitrogen-replete biomass and that a critical value 
of N of 2.17% of total solids was recorded for maximum 
growth [82]. Romagnoli et al. [83] recorded a C/N ratio of 
29.3 for U. intestinalis, an abundantly available macroal-
gae in the Baltic Sea. The variation in the C/N ratio can 
be approximated between genera with brown seaweeds 
typically having near-ideal C/N ratios compared to red 
and green seaweeds with excess nitrogen for anaerobic 
digestion.

Macroalgae pre‑treatments and biogas yields
In anaerobic digestion, the hydrolysis phase has been 
identified as the rate limiting step that can be improved 
by substrate pre-treatment [84]. Many different pre-
treatment technologies have been reviewed [19, 20, 29, 
40, 43, 85] and can be classified into physical, chemical, 
biological and physio-chemical dependent on the differ-
ent forces or energies used in the pre-treatment process. 
Experimental and implementation work should focus 
on technologies for pre-treatment and conditioning of 
macroalgae biomass as they have a direct impact on the 
methane fermentation process [86]. Pre-treatment is an 
important step in the biorefinery process of macroalgae 
due to their complex composition. Pre-treatment tech-
nologies facilitate the conversion of complex substrates 
into simpler monomers debottlenecking the hydrolysis 
stage and are a crucial step in the biorefinery process [39]. 
The pre-treatment of macroalgae has been thoroughly 
investigated for achieving improved methane yields when 
using many macroalgae species (see Table 2) as it greatly 

affects the technical, economic and environmental sus-
tainability of macroalgal biogas production [87].

Initial pre‑treatments: washing and/or drying (dewatering)
Washing reduces the ash content of seaweeds by the 
removal of specific compounds such as  K2O and  Na2O. 
This increases the ratio of VS to TS and, therefore, 
increasing BMP per unit mass [82]. Washing macroal-
gae in freshwater also can increase the BMP by reduc-
ing the inhibition of methane production by anaerobic 
digestion associated with high salinity (accumulation of 
sodium and potassium cations) [88]. Washing seaweed 
may remove salts and impurities but the organic matter 
may also be lost. Therefore, selecting the optimal pre-
treatment time and temperature may allow a removal of 
salts with minimum organic matter loss [4]. Drying or 
dewatering of macroalgae biomass depends on the type 
of conversion process (wet or dry) [19]. However, even 
for wet processes, dewatering algae to a water content 
by 20–30% can be beneficial in stabilising the biomass 
and lower energy consumption during transportation. 
Alvarado-Morales et al. [89] considered drying an energy 
intensive process when carrying out an energy analysis of 
seaweed-based biofuel production.

Edward et al. [76] stated that washed and dried Lami-
naria digitata showed the highest biomethane potential 
(BMP) with a yield of 141.45 L  CH4  kg−1 VS, compared 
to 93.35 L  CH4  kg−1 VS for washed and fresh L. digitata 
biomass. Adams et al. [90] found that unwashed L. digi-
tata generated a higher concentration of ethanol than 
washed biomass; however, in contrast, washed samples 
gave higher methane yields. Therefore, the prewashing 
step may be considered more suitable for the anaerobic 
digestion conversion route. A study by Milledge et  al. 
[91] to examine the effect of washing Sargassum muti-
cum with freshwater showed no statistical difference in 
methane yield between washed and unwashed samples. 
Mono-digestion experiments on the green seaweed Ulva 
lactuca by Allen et al. [92] demonstrated that a combina-
tion of washing and drying yielded the best results with a 
yield of 250 L  CH4  kg−1 VS. Bruhn et al. [82] found that 
drying U. lactuca resulted in a five–ninefold increase in 
specific methane production compared to wet biomass, 
but this increase might also be associated with reduction 
in particle size during drying. A study by Briand et  al. 
[93] demonstrated the action of washing and grinding 
pre-treatments on the development of Ulva sp. meth-
ane digestion with non-washed biomass having a higher 
methane yield of 110 L  CH4  kg−1 VS than washed at 94 
L  CH4  kg−1 VS. Washing the algae resulted in the loss of 
some easily digestible soluble metabolites slowing down 
the start of the process and decreasing the methane yield. 
Grinding of the biomass facilitated a rapid hydrolysis and 
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allowed better methane production rates to be achieved. 
Ground biomass had a higher methane yield at 177 L 
 CH4  kg−1 VS compared to non-ground samples at 145 L 
 CH4  kg−1 VS. In the red seaweed Gracilaria vermiculo-
phylla, pre-treatments of washing and maceration caused 
significant increase in BMP reaching 481  CH4  kg−1 VS, 
while thermochemical pre-treatment increased the algae 
solubilisation but not its BMP [88].

Physical (mechanical) pre‑treatment
Mechanical pre-processing to decrease the size of mac-
roalgae biomass and concomitantly increase the surface/
volume ratio increases the access for degrading enzymes 
and enhances the hydrolysis of storage and structural 
polysaccharides. The result is either an increase in the 
final methane yield or a more rapid biogas production 
at the initial stage [94]. Physical pre-treatment has been 
used in many studies of macroalgae as a biofuel and cov-
ers the processes of maceration [52, 95], chopping [76, 
96, 97], shredding [98], beating [99, 100], milling [90, 101, 
102], blending [103] and grinding [35, 104–106] of mac-
roalgae biomass.

The size reduction of dried macroalgae has been 
reported as enhancing biogas production from brown 
macroalgae [107]. A study of Laminaria sp. compared 
the effects of three different pre-treatment methods, 
beating, ball milling and microwave on methane pro-
duction. Beating pre-treatment samples yielded the best 
result by achieving a methane increase of up to 37% with 
respect to raw seaweed [108]. The authors concluded that 
the main effect of beating Laminaria spp. biomass was 
to promote the start of anaerobic digestion and a reduc-
tion in incubation time. The findings of Montengelli 
et al. [99] suggested that ball milling pre-treatment ham-
pered anaerobic digestion of macroalgae and that a par-
ticle size < 1 mm of dried macroalgae negatively affected 
methane production. The study showed that unlike lig-
nocellulosic biomass, which must be reduced to 1–2 mm 
in order to decrease heat and mass transfer limitations 
during the hydrolysis step, their work showed that for 
macroalgae a reduction of particle size in this range did 
not show any improvement in anaerobic digestion per-
formance. In general, the main effect of reducing particle 
size is to increase the surface area available to anaerobic 
microorganisms and thereby increasing gas production. 
The authors suggested that excessive particle reduction 
can speed up the hydrolysis and acidogenesis phases in 
anaerobic digestion, increasing production rates of vola-
tile fatty acids and decreasing the pH [99]. A pH that is 
within the acidic range will hamper methanogenic activ-
ity and consequently inhibit biogas production rates.

A study on Pelvetia canaliculata with the aim to max-
imise methane yield while minimising the pre-treatment 

beating time showed that it was possible to optimise the 
methane yield of 283 mL  CH4  g−1 VS with pre-treatment, 
which represented an increase of 45% compared to non-
pre-treated algae [100]. Mechanical pre-treatment using 
a Hollander beater was shown to increase biodegrada-
tion effectiveness in P. canaliculata, Fucus vesiculosus 
and Fucus serratus. Results showed that up to 20% extra 
biogas with a positive net energy gain of 85% was pos-
sible [109]. A further study using a Hollander beater on 
particle size reduction optimisation of Laminaria spp. 
biomass, estimated that when about 80% of particles are 
sized below 1.6  mm2, a methane yield improvement of up 
to 53% can be achieved [110].

Nielsen et al. [81] investigated different pre-treatments, 
including washing, pre-treatment without washing, 
chopping, macerating, on four macroalgal species for the 
suitability of bioconversion to methane. In batch experi-
ments (53  °C), methane yields varied from 132 mL  CH4 
 g−1 VS for Gracilaria vermiculophylla (washed, macer-
ated), 152  mL  CH4  g−1 VS for Ulva lactuca (washed, 
macerated), 166 mL  CH4  g−1 VS for Chaetomorpha linum 
(washed, macerated) and 340 mL  CH4  g−1 VS for Saccha-
rina latissima (washed, chopped). The authors stated that 
S. latissima appeared very suitable for anaerobic diges-
tion, and that methane yields for U. lactuca, G. vermic-
ulophylla and C. linum could be increased by 68%, 11% 
and 17%, respectively, by maceration pre-treatment. In all 
seaweed species, methane yield was enhanced with wash-
ing of biomass. Maceration was also noted to increased 
methane yield of green macroalgae Ulva lactuca from 
174 to 271 L  CH4  kg−1 VS, increasing the BMP yield up to 
56% when compared to untreated biomass [82].

Thermal pre‑treatment
The rate limiting hydrolysis step can be assisted by ther-
mal pre-treatment to disrupt the cell wall structure and 
assist the conversion of polymeric carbohydrates into 
monomeric sugars. In a study by Lin et  al. [78], hydro-
thermal pre-treatments were assessed for hydroly-
sis and subsequent production of biomethane by the 
brown macroalgae Saccharina latissima. Biomethane 
yields were found to increase from 281.4  mL  CH4  g−1 
VS untreated to 345.1  mL  CH4  g−1 VS pre-treated at 
140  °C, an increase of 22.6%. The authors stated that 
hydrothermal pre-treatment of S. latissima could break 
down the recalcitrant macro- and micro-structures of 
macroalgae and enable seaweeds to be effective produc-
ers of gaseous biofuels. Thomson et  al. [80] found that 
hydrothermal pre-treatment of pelagic brown macroal-
gae Sargassum spp. increased the degradation and solu-
bilisation of organic components in Sargassum spp. for 
effective and accelerated methane fermentation down-
stream. Peak methane production of 116.7  mL  CH4  g−1 
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VS was achieved following pre-treatment at 145–150 °C 
for 30 min. Hydrothermal pre-treatment also reduced the 
concentration of  H2S in biogas from 3 to 1%, mitigating 
the challenges associated with biodigester performance 
and harmful emissions.

The effect of temperature on biogas and methane yield 
from Laminaria digitata was investigated at 25, 35, 45, 
55 °C [111]. Results showed that cumulative biogas pro-
duction was best at 35  °C, while overall methane yield 
was best at 55 °C giving 352 mL CH4  g−1 VS. The perfor-
mance of mesophilic and thermophilic co-digestion of L. 
digitata with cattle manure operating at various feeding 
ratios of macroalgae (15, 24, 41%) was examined by [112]. 
The results showed specific methane yields of 165 L  CH4 
kg-1 VS and 185.7 L  CH4 kg-1 VS at feeding rates of 24% 
and 41%, respectively, from thermophilic digestion. The 
study revealed that variation in L. digitata feeding did 
not largely contribute to the specific methane yield for 
mesophilic co-digestion which was similar to control lev-
els. The methane yield of green macroalgae Ulva lactuca 
was shown to increase from 174 to 187 L  CH4  kg−1 VS 
when subject to thermal pre-treatment at 130  °C for 20 
min [82]. Thermal pre-treatment has also been applied at 
low temperatures ranging from 50 to 70  °C, where bio-
logical mechanisms may be involved. The duration is 
longer, from about 10 h to a few days. This pre-treatment 
can take advantage of sludge endogenous enzymes (tem-
perature phased anaerobic digestion (TPAD), which uses 
first-stage AD [85]. Steam explosion is a thermal pre-
treatment where biomass is placed in a vessel and steam 
is applied at high temperatures (~ 160 °C) and pressure 
(~ 6 bars) for a few minutes (10–30 min) after which the 
steam is flashed and the biomass is quickly cooled. The 
sudden pressure drop leads to cell wall rupture and bio-
mass disintegration [113]. Vivekanand et al. [114] noted 
a marginal improvement in methane yield when a steam 
explosion pre-treatment at 130  °C was applied to the 
brown macroalgae Saccharina latissima.

Thermo‑chemical pre‑treatment (60–220 °C, combined 
with acidic or alkali reagents)
Acid hydrolysis uses acids such as sulphuric acid  (H2SO4) 
to hydrolyse glycosdic bonds. For effective acid hydrolysis 
of macroalgal biomass, solid/liquid (S/L) ratio, acid type, 
acid concentration, reaction time and reaction tempera-
ture are important parameters that need to be optimised 
[10]. Acid hydrolysis can either serve as a pre-treatment 
step before enzymatic hydrolysis or as the chemical 
method to hydrolyse biomass to produce reducing sug-
ars. Barbot et al. [104] used thermo-acidic pre-treatment 
to enhance hydrolysis of polymeric molecules in bio-
mass and increase methane production from the brown 
macroalgae F. vesiculosus [104]. The author stated that 

0.2 HCl at 80  °C for 2 h can boost methane formation 
by  140% (113 mL  CH4) compared to untreated biomass 
(47 mL  CH4), and a lower pre-treatment temperature of 
50  °C improves methane recovery by  83% (86 mL  CH4). 
It was noted that thermochemical pre-treatment of red 
seaweed Gracilaria vermiculophylla increased the algae 
solubilisation but not it’s BMP, possibly due to the release 
of polyphenols and other toxic compounds on heating 
the substrate [88]. Lymperatou et  al. [115] found that 
thermos-acidic pre-treatment improved methane yields 
by  78% compared with untreated biomass though a five-
fold increase in cost from 0.7 to 3.5 USD/m3. The authors 
stated that alkaline pre-treatment of room-temperature 
mixing with 15 w/w% was the most cost-effective process 
with a 33% decrease in cost per unit methane.

Microwave and ultrasonic pre‑treatment
Ultrasound technology is an effective method to enhance 
biogas production [116]. Ultrasound promotes cell dis-
integration releasing intracellular soluble organic matter 
and can enhance the efficiency of the anaerobic diges-
tion process. Microwave pre-treatment may also enhance 
biogas production. The alternating electric field caused 
by microwave irradiation can rapidly change the dipole 
orientation of polar molecules and generate heat evenly 
across the particles. Advantages over water-bathing and 
autoclaving are that it has a shorter reaction time and can 
maintain the temperature of each part relatively equal 
across the reaction vessel. It can also be well controlled 
and stopped immediately [28].

Romagnoli et  al. [105] applied microwave pre-treat-
ment to Fucus vesiculosus to increase methane yield. 
Microwave pre-treatment at 700 w for 90 s improved 
biogas production in the range of 7.8–43.7% and a range 
of 37.2–45.2% when applied for 3 min. The authors stated 
that the effects of microwaves were generally positive for 
biogas production. A study by Montingelli et al. [108] on 
Laminaria spp. showed that microwave pre-treatment 
resulted in a 27% reduction of biogas production com-
pared to untreated macroalgae. The authors stated that 
in general microwave pre-treatment increases biomass 
solubilisation which should accelerate and/or increase 
anaerobic biodegradability; however, their data showed 
that the use of microwave pre-treatment at 100  °C 
impacted negatively and that methane production from 
macroalgal biomass does not benefit from pre-treatments 
involving the use of high temperatures. The negative 
effects of microwave pre-treatment are most likely due to 
an increase in rapidly digestible materials and inhibitors 
that causes microbial imbalances during batch digestion.

Karay et al. [87] demonstrated that 2.53 g/L of reduc-
ing sugars in green macroalgae Ulva rigida was obtained 
after ultrasonic pre-treatment compared to 0.6 g/L from 
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the crude macroalgae, suggesting that ultrasonic pre-
treatment could promote hydrolysis of carbohydrate 
polymers to reducing sugars. Kumar et  al. [117] stated 
that higher energy input with longer duration increased 
organic release; however, better solubilisation may not 
directly contribute to biogas production as the forma-
tion of some by-products can have a toxic effect on the 
microbial activities that will affect anaerobic digestion. A 
study by Wu et  al. [118] on the effect of ultrasonic and 
microwave pre-treatments on a mixture of F. vesiculosus 
and F. serratus stated that a combined microwave and 
ultrasonic pre-treatment obtained the highest cumula-
tive methane yield of 260 mL  CH4  g−1 VS, which is two-
fold higher than for mechanical (chopped and ground) 
pre-treatment with methane yield of 122 mL  CH4  g−1 VS 
[118].

Biological (microbial, enzymatic digestion) pre‑treatment
Macroalgae possess an array of polysaccharides such as 
cellulose, alginate and laminarin which have the poten-
tial for production of alternative biofuels. These polysac-
charides are not easily accessible for biological digestion; 
however, pre-treatment of macroalgae with enzymes may 
make these polysaccharides easier to access by microbes 
and thereby allowing effective utilisation in anaero-
bic digestion. The brown macroalgae S. latissima con-
tains high levels of carbohydrates and was assessed by 
Lamb et  al. [119] for the production of biogas through 
anaerobic digestion following enzymatic pre-treatment. 
Analysis of harvested S. latissima was shown to contain 
30.11 g of reducing sugars per 100g of dry sample upon 
enzymatic hydrolysis yielding 459 mL per gVS of biogas 
through anaerobic digestion with methane content of 
56% and biomethane production of 257  mL  CH4  g−1 
VS and 208  mL  CH4  g−1 VS with and without enzyme 
hydrolysis, respectively. These results suggest a biometh-
ane potential of 1760  m3 per ha of productive sea floor 
growing S. latissima.

Macroalgae consortium composed of wild brown and 
green seaweeds found in the Mexican Caribbean were 
investigated for biogas production using fungal and enzy-
matic pre-treatment [120]. Two biological pre-treatments 
were carried out, macroalgae + fungi (Bm-2 strain) and 
macroalgae + enzymatic broth. Enhancement of biogas 
production was obtained with the macroalgae + fungi 
pre-treatment and was statistically higher than values 
obtained with enzymatic pre-treatment at 86 L  CH4  kg−1 
VS and untreated macroalgae at 81 L  CH4  kg−1 VS.

Combined processes
A study by Jard et al. [96] looked at the efficiency of the 
anaerobic digestion of red macroalgae Palmaria palmata 
which was subject to a range of thermal (between 20 and 

200  °C) and chemical (addition of NaOH and HCl) pre-
treatments. Results showed that at 20, 70, 85 and 120 °C 
and soda and acid pre-treatments at 160 °C there was no 
significant effect on methane potential. After high tem-
perature pre-treatment of 180–200  °C, BMP decreased 
due to the formation of refractory compounds in the liq-
uid fraction. However, the addition of NaOH at 20 °C led 
to a release of proteins and induced an increase in BMP 
from 308 mL  CH4  g−1 VS (untreated) to 365  mL  CH4 
 g−1 VS. Gruduls et  al. [97] combined  CO2 and thermal 
pre-treatments of boiling, microwaving and autoclaving 
on the BMP of Baltic Sea macroalgae biomass. The val-
ues of BMP were assessed for untreated biomass of four 
species, brown algae F. vesiculosus (97.9 mL  CH4  g−1 
VS), red algae Furcellaria lumbricalis (173.5 mL  CH4 
 g−1 VS), green algae Cladophora sp. (377.1 mL  CH4  g−1 
VS) and U. intestinalis (364.8 mL  CH4  g−1 VS). The best 
results were obtained by combining  CO2 treatment with 
subsequent autoclaving with an increase of BMP for F. 
vesiculosus of 132.5% (227.7 mL  CH4  g−1 VS) and for F. 
lumbricalis of 116.4% (375.5  CH4  g−1 VS). An increase of 
BMP of around 12–14% was also observed for the other 
two species Cladophora sp. 14% (429 mL  CH4  g−1 VS) 
and U. intestinalis 12.5% (410 mL  CH4  g−1 VS).

Ding et al. [121] deployed the pre-treatments of hydro-
thermal, dilute hydrothermal acid hydrolysis, enzymatic 
hydrolysis and a combination of above to facilitate degra-
dation of macroalgae Laminaria digitata and to improve 
the two-stage dark-fermentation biohydrogen and 
biomethane co-production. Hydrothermal (140  °C for 
20 min) pre-treatment was considered the optimum pre-
treatment securing biohydrogen and biomethane yields 
of 44.8 and 282.2 L  CH4  kg−1 VS, respectively. The addi-
tion of dilute  H2SO4 during hydrothermal pre-treatment 
contributed to a higher yield of carbohydrate monomers 
but generated more inhibitive products [121]. In order 
to improve product yields achieved by the brown mac-
roalgae Nizimuddinia zanardini, the biomass was pre-
treated with dilute sulphuric acid (7.0% w/w) and hot 
water (121 °C, 30 min in autoclave). Both pre-treated and 
untreated biomasses were subject to enzymatic hydroly-
sis by cellulose and B-glycosidase. The results showed 
that biogas was increased from 170 to 200  m3 per ton of 
dried algae biomass and the ultimate methane yield for 
untreated and hot water pre-treated macroalgae bio-
mass was 117 mL  CH4  g−1 VS and 143 mL  CH4  g−1, VS, 
respectively [122]. The authors reported that hot water 
pre-treatments were promising processes to improve the 
digestibility of the initial biomass and increase the yield 
of ethanol and biogas.

An integrated biorefinery approach using the green 
macroalgae Chaetomorpha linum was investigated for 
the co-production of bioethanol and biogas by Yahmed 
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et  al. [123]. Among acidic, neutral and alkali pre-treat-
ments of C. linum biomass, 3% NaOH gave the best 
results in terms of thallus disintegration, biomass recov-
ery and enzymatic digestibility. Anaerobic digestion for 
biogas production included all effluents and co-products 
issued from various stages of saccharification and fer-
mentation aimed at ethanol production, cell wall degrad-
ing enzyme production and intermediate operations. 
Hydrolysis with a crude specific enzyme preparation, 
fermented from Aspergillus awamori at 45  °C, pH 5 for 
30 h, gave the maximum yield of fermentable sugar of 
0.22 g/g dry substrate, which corresponded to a biometh-
ane yield of 260 mL  CH4  g−1 VS. The authors stated that 
this method presents an eco-friendly biorefinery process 
co-producing bioethanol and biomethane with almost 
complete conversion of macroalgae biomass.

Further work by Yahmed et  al. [124] on Ulva sp. 
investigated the effect of fungal (Aspergillus fumiga-
tus SL1) pre-treatment on biogas production compared 
to conventional acid (4% HCL) and alkali (4% NaOH) 
pre-treatments. Acid pre-treatment had a significant 
negative impact on BMP at mL 77  CH4  g−1 VS (132 mL 
 CH4  g−1 VS untreated). This was suggested as result-
ing from hemicelluloses and cellulose removal. Alkali 
pre-treatment increased BMP from 132  mL  CH4  g−1 
VS (untreated) to 148  mL  CH4  g−1 VS (pre-treated), 
explained by the biochemical composition changes, par-
ticularly solubilisation of cell wall sugars, cellulose and 
hemicellulose. Biogas production was enhanced with 
the fungal pre-treatment reaching 153  mL  CH4  g−1 VS, 
statistically higher than values obtained for the chemical 
pre-treatments.

Freshwater (washed) and thalassic (non-washed) 
anaerobic digestion of Ulva sp. were compared to deter-
mine the most suitable conditions for biogas production 
[125]. Biological hydrolysis (hydrolytic bacteria) pre-
treatment was used to improve methane yield and a 1% 
NaOH pre-treatment was employed to minimise any lim-
itation of biological hydrolysis. The low improvement of 
the methane yield from both pre-treatments under fresh-
water conditions, 77.66 mL  CH4  g−1 VS (hydrolysis) and 
61.67  mL  CH4  g−1 VS (NaOH), significantly improved 
under thalassic conditions. Here, methane yield after 
biological hydrolysis pre-treatment was 180.9  mL  CH4 
 g−1 VS, higher than using the NaOH pre-treatment of 
158.19  mL  CH4  g−1 VS. Duration time was less for the 
1% NaOH pre-treatment at 27 days compared to 62 days 
for biological hydrolysis pre-treatment. Experiments 
were applied to evaluate different strategies to enhance 
methane yield of the red macroalgae Gracilaria vermicu-
lophylla. The BMP of G. vermiculophylla after physical 
pre-treatments of washing and maceration reached 481 L 
 CH4  kg−1 VS, corresponding to a methane yield of 79%. 

No significant effects were achieved in BMP after ther-
mochemical pre-treatment; however, algal solubilisation 
increased up to 44% [88]. Investigation into the use of 
organic acid (6% oxalic acid at 120 °C for 1 h) and enzy-
matic (cellulose) pre-treatments to enhance the recovery 
of reducing sugars from L. digitata and S. latissima and 
to improve biogas production from L. digitata, found 
that despite the enhancing effect of the pre-treatments 
no considerable improvement in biogas production was 
observed [107].

Factors that can influence anaerobic digestion of macroalgae 
feedstocks
The performance of anaerobic digestion in biogas pro-
duction depends mainly on the nature and type of 
biomass being digested as the composition substrate 
provides both raw materials for conversion and the nec-
essary nutritional materials for microorganisms involved 
in the process [126]. Many factors including feedstock 
characteristics, reactor design, and operational condi-
tions may affect the performance of anaerobic digestion 
processes, either by process enhancement or inhibition 
[4]. Several studies have shown that the hydraulic reten-
tion time—the average time interval when the substrate 
is kept inside the digester and organic loading rate—how 
much organic dry matter can be fed into digester, per 
volume and time unit, are key parameters that can affect 
gas yield. Temperature, pH-value, nutrient supply, stir-
ring intensity, and amount of inhibitors can all affect gas 
production significantly. The differences between practi-
cal and potential biogas yields are often ascribed to the 
presence of inhibitors [127]. Material may be judged 
inhibitory when it causes an adverse shift in the micro-
bial population or inhibition of bacterial growth, leading 
to lower or no methane production. A variety of com-
pounds are known to inhibit anaerobic digestion, these 
include  NH3 (ammonia),  H2S (hydrogen sulphide), heavy 
metals, salts and polyphenols [40] (Table 3).

Temperature
Biogas formation can be achieved over a wide range of 
temperatures from: psychrophilic at < 20 °C, minimum 
retention time 70–80 days; mesophilic at 20–40 °C, mini-
mum retention time 30–40 days; thermophilic at > 40 °C, 
and a minimum retention time 15–20 days [43]. Temper-
ature is one of the most critical parameters in influencing 
microbial activity across all the major stages of anaero-
bic digestion, with a direct correlation between increased 
temperature and rates of reaction. Thermophilic condi-
tions exceeding 40 °C lead to process intensification by 
reduced reactor size, shorter retention times and higher 
methane yields for terrestrial substrates [128]. However, 
the thermodynamic effects of higher temperature on 
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reduced  CO2 solubility and increased ammonia ionisa-
tion constant significantly reduces the reactor buffering 
capacity and lead to process instability that can cause 
reactor failure. A study by Sarker et al. [112] found that 
that by using acclimatised inocula the methane yields 
by Laminaria digitata were improved by 13% operating 
at 50 °C compared to 35 °C before a process instability 
caused an uncontrolled acidification and a reactor failure 
after 81 days. On a batch scale of 500  ml over 40 days, 
Membere and Sallis [111] observed that the relative per-
formance of operating temperatures for the anaerobic 
digestion of Laminaria digitata has to be 55 °C > 25 °C > 35 
°C > 45 °C. Though, a study by Vanegas et al. [101] exam-
ining the utilisation of five seaweed species to produce 
biogas and methane showed that digestion temperature 
influenced biogas production where reactors operating at 
35 °C produced higher quantities than at 20 °C.

Inhibitory substances
Feedstocks can contain substances that can inhibit anaer-
obic digestion, and therefore, the levels of these inhibi-
tory substances must be managed. A material may be 
judged inhibitory when it causes an adverse shift in the 
microbial population or inhibition of bacterial growth. 
Common inhibitors are ammonia, hydrogen sulphide, 
light metal ions, heavy metals and polyphenols. Hydro-
phobic free ammonia  (NH3) is the most common form of 
inhibition since it is membrane-permeable. Methanogens 
have the least tolerance to  NH3 inhibition amongst all the 
microbes in anaerobic digesters [129]. An investigation 
by Akunna et al. [126] looked at factors that could affect 
anaerobic degradation of L. digitata used as a co-sub-
strate with terrestrial plant biomass. The authors specu-
lated that L. digitata may contain certain compounds 

that even at trace concentrations appear to inhibit anaer-
obic microbes and these unidentified compounds appear 
to have a more adverse effect on methanogens than on 
other anaerobic digestion microbial groups. The authors 
recommended that an appropriate adaptation strategy 
involving an initial low proportion of seaweed relative to 
the total organic loading rate is necessary to ensure effec-
tive adaptation of microorganisms to inhibitory constitu-
ents of seaweed. The study also suggested that where the 
availability of seaweed was seasonal then a fresh adapta-
tion or start-up procedure may be necessary during each 
cycle of seaweed availability to ensure sustainable process 
stability.

Sulphur
Macroalgae contain significantly higher amounts of ash 
consisting mainly of chlorine and sulphur salts than ter-
restrial biomass [59]. The green algae Ulva lactuca can 
have a sulphur content of up to 5 d.wt.% which leads to 
significant levels of hydrogen sulphide  (H2S) in anaero-
bic digestion [17]. In Ulva sp., the cell wall consists of 
up to 29% of ulvan, a sulphated polysaccharide [92]. 
While the sulphated polysaccharides fucoidan, ulvan 
and carrageenan contain up to 25%, 8% and 11% sulphur, 
respectively, on a dry basis depending on their degree of 
sulphation. Peu et al. stated that biogas from U. lactuca 
contained high levels of hydrogen sulphide up to 3.5% 
which resulted in a biogas being unsuitable for energy 
recovery without specific treatment. Hydrogen sulphide 
can be removed from biogas by using chemical absorb-
ers  (Fe3+ or NaOH) or adsorption on activated carbon 
and zeolite structures. One effective treatment widely 
used in biogas plants is biological desulphurisation [130]. 
This treatment is based on the introduction of a limited 

Table 3 Advantages and disadvantages of macroalgae as a feedstock for anaerobic digestion (modified from [4, 19])

Advantages Disadvantages

• Anaerobic digestion can be performed on wet algal biomass negat-
ing the need for energy using dry methods [155]. Drying of seaweed 
is not required for anaerobic digestion
• High polysaccharide content in seaweeds is favourable for anaerobic 
digestion [96]
• Low or negligible amounts of recalcitrant lignin, low cellulose content 
and easily biodegradable sugars making algal biomass to methane 
by anaerobic digestion easier than lignocellulosic substrate [92, 101]
• No competing with agricultural crops for land or freshwater [11]
• Space efficient in terms of energy yield per unit area
• Wastewater, brackish water and even seawater can be used for algal 
cultivation; therefore, water quality is less critical
• Carbon dioxide sequestration as seaweeds convert carbon dioxide 
into biomass and exports significant quantities of detritus
• Socio-economic benefits particularly in rural and coastal areas
• Integration with other technologies. The anaerobic digestion process 
can be used as a co-technology for algal residues utilisation after biodiesel 
[4]

• In general, seaweeds contain significantly higher levels of ash, mainly 
chlorine and sulphur salts, than terrestrial biomass [82]
• Methane production can be inhibited by high content of alkali earth 
metals, sodium concentrations above 10 g  Na+/L can strongly inhibit 
methanogenesis [125]
• The combination of high sulphur along with nitrogen content, particularly 
in green seaweeds, can be problematic in biogas production due to  NH3 
toxicity [92, 127, 156]
• During anaerobic digestion seaweeds can produce high levels of hydro-
gen sulphide  (H2S), up to 3.5% making it unsuitable for energy recovery 
without specific treatment [140]
• High fibre content can lower methane production as insoluble fibres can 
be difficult to degrade [96]
• Polyphenols and tannins present in seaweed are potential inhibitors 
in anaerobic digestion [96, 127]
• Lack of knowledge of the characterisation and biomethane potential, 
particularly seasonal variation, of selected seaweeds [4]
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volume of air into a gasometer. Hydrogen sulphide in 
the biogas is then oxidised into soluble sulphate by the 
oxygen contained in the air tanks by specific sulpho-
oxidising microorganisms, such as Thiomicrospira sp. or 
Thiobacillus sp.

Phenolic compounds
Phenolic compounds are secondary metabolites not 
directly involved in algal primary processes that are char-
acterised as stress compounds involved in chemical pro-
tective mechanisms against grazing, bacterial settlement 
and other fouling organisms, UV-radiation and metal 
contamination. In brown algae, phenolic compounds 
such as phlorotannins exhibit primary functions such 
as growth and development of cell walls with adhesive 
functionality. Polyphenols (such as phlorotannins) and 
tannins found in seaweeds are potential inhibitors in 
anaerobic digestion [131]. Polyphenols have been found 
to specifically inhibit alginate lyase, an enzyme that 
breaks down alginic acid [132]. Phlorotannins inhibit 
enzyme activities of various microbes, including metha-
nogens, in the anaerobic digestion process. Polyphenol 
content of seaweed is dependent on harvesting time, 
location, light intensity, salinity, temperature and ambi-
ent nutrients [132].

Fucus serratus, found across the Atlantic coast of 
Europe, seems generally to be poorly biodegradable 
under anaerobic conditions, possibly due to a relatively 
high content of recalcitrant and inhibitory compounds 
such as polyphenols. Although inhibitory polyphenols 
are present in most brown seaweeds, their concentra-
tion in Fucus sp. has been reported to be up to 14% of 
the total solids, which is significantly higher than the 2% 
in Laminaria and Saccharina spp. [133, 134]. The brown 
seaweed Ascophyllum nodosum contains phlorotannins 
which inhibit the anaerobic digestion process. Seasonal 
variation in polyphenol content of A. nodosum has previ-
ously been described by Parys et al. with high polyphenol 
levels in the summer months having an adverse effect on 
biogas production, with suggested harvesting dates of A. 
nodosum in March and October in Ireland. Specific gas 
production from A. nodosum was reported as 50% less 
than with brown seaweed Laminaria spp. [131].

Halogenated hydrocarbons
Seaweeds produce a range of halogenated secondary 
metabolites, especially chlorinated, brominated and iodi-
nated compounds, as part of their defence systems. The 
brown alga Laminaria digitata shows the strongest accu-
mulation of iodine among all living systems, with more 
than 30,000 times the concentration found in seawater, 
or more specifically up to 1.2% dry weight [135]. Halo-
genated hydrocarbons have moderate to high toxicity, 

particularly for methanogenic archaea. Brominated hal-
ogens such as 2-bromoethanesulfonic acid (BESA) have 
been shown to competitively inhibit the methyl trans-
fer reaction at the terminal reductive step during meth-
ane formation using  H2 and  CO2 [136]. As such, several 
brown seaweeds, including Aschophyllum nodosum and 
Laminaria japonica, have been found to reduce meth-
ane production from rumen fermentation [137]. In addi-
tion to enzyme inhibition, halogenated compounds have 
been found to disrupt membrane structures which, is 
further exacerbated by the limited anaerobic dehalogena-
tion pathways [41]. Furthermore, halogenated organic 
compounds constitute a large group of environmental 
chemicals due to their use in industry and agriculture. 
Concerns over the environmental fate and releases of 
these halogenated organic compounds have resulted 
in research into their biodegradation which shows that 
many of these compounds are more easily degraded 
under anaerobic conditions. Biosorption via seaweed 
has become an alternative to the existing technologies in 
removing these pollutants [41].

Salts
Unwashed seaweed can contain significant quantities of 
non-volatile ash primarily consisting of water-soluble 
salts such as NaCl and KCl up to 20 wt% of the dry solids. 
During AD, the high salt content manifests as a microbial 
stressor due to the effect on microbial osmotic pressure 
[138]. This results in microbes expending  energy remov-
ing excess ions, thereby reducing methane yields or at 
high concentrations, completely inhibiting microbial 
degradation. Patel et al. reported that sodium is essential 
for AD processes for cell growth and metabolism with 
an optimum concentration of 350 mg  L−1 [139] above 
which, high concentrations of NaCl can affect methane 
production when marine algae are used for anaerobic 
digestion, with inhibitory effects at high levels (5–8 g  L−1) 
[139]. Acclimatised inoculum or inoculum sourced from 
the halophilic marine environment can stabilise the pro-
cess. Tabassum et al. [74] noted that high salinities could 
be tolerated at low organic loading rates below 4 gVS  L−1 
 d−1. Alternatively, the use of a suitable pre-treatment to 
remove the salts from the substrate can prevent accu-
mulation of salt in the reactor. However, desalination of 
macroalgae by heat or pressure may result in lower meth-
ane yields compared to untreated algae, possibly due to 
the loss of easily digested organic matter [140].

Heavy metals
Seaweeds accumulate heavy metals such as lead, cad-
mium, copper, zinc, nickel and chromium, which are well 
known toxicants for bacteria. Heavy metals can inhibit 
anaerobic digestion as low as 32 ppm with inhibition 
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patterns of (most toxic) Cu > Ni ∼ Zn > Cr > Cd > Pb (least 
toxic) [141]. Several heavy metals such as Co, Ni and Se 
are essential trace elements for anaerobic digestion but 
at higher concentrations can cause substitutive ligand 
binding, inhibition of membrane-transport processes and 
electron siphoning [142, 143]. The negative effects can 
be decreased by precipitation with sulphide compounds. 
In anaerobic digestion, heavy metal contaminants from 
solid seaweed can be removed using a two-stage anaero-
bic system by mobilisation into a liquid phase and sub-
sequent metal ions absorption [144, 145]. In addition, 
these heavy metals can accumulate in the digestate and 
may affect the value of the digestate as a fertiliser or soil 
conditioner [9, 146].

Future aspects and challenges
The use of macroalgae for biofuel production is still at an 
extensive research and development stage, e.g., on a labo-
ratory and pilot-scale and there are very few macroalgae 
digesters on a commercial scale [20]. Each pilot project 
has focused predominantly on the technical aspects of 
biofuel production from macroalgae [147]. Among the 
various pathways for producing biofuel from seaweed 
anaerobic digestion is perhaps the closest to industrial 
exploitation [34]. A prime candidate for European kelp 
cultivation, Saccharina latissima, was estimated by Allen 
et  al. [52] to achieve gross energy yields from anaero-
bic digestion at 365 GJ  ha−1  a−1, which was greater than 
those based on the current liquid biofuel systems such 
as ethanol from sugarcane (135 GJ   ha−1   a−1) and bio-
diesel from palm oil (120 GJ   ha−1   a−1). Allen et  al. [46] 
based their estimates on a seaweed production of 300 
t  wwt   ha−1   a−1, which is at Northern Europe’s very top 
range of productivity [7]. Achieving these high yields is 
essential for lowering the seaweed production cost and 
improving the commercial viability of anaerobic diges-
tion. Further research is necessary to validate that high-
yielding seaweed can produce similar methane yields to 
previous studies with wild or low-yield farmed seaweed.

Furthermore, practical yields of biogas from anaerobic 
digestion of seaweed can be considerably below the theo-
retical maximum [91]. To achieve high conversion rates 
several approaches should be considered.

• Pre-treatment of feedstock to aid hydrolysis of bio-
mass can reduce digestion time

• Washing of biomass to remove impurities and reduce 
salinity

• Characterisation of seaweed biomass to determine 
chemical composition specifically with regards to 
structural polysaccharides

• Co-digestion of seaweed with carbon-rich biomass to 
balance the C/N ratio

• Optimisation of the microbial community by the 
selection of a suitable inoculum for marine biomass

• Optimisation of operational parameters such as 
organic loading rate (OLR), hydraulic retention time 
(HRT) and solids retention time (SRT)

The optimum approach will vary depending on the 
individual seaweed genera or species due to the varia-
tion between species in both recalcitrance and inhibitor 
profile. The characterisation and reporting of anaerobic 
digestion inhibitors in published literature is not wide-
spread. Reporting on seaweed characterisation needs 
further improvement, specifically with regards to salts, 
phenolics and halogenated compounds. As the effects 
of each inhibitor have been investigated individually but 
the interaction between multiple inhibitors has not been 
investigated. Similarly, the positive effects of pre-treat-
ments on methane yields have been investigated, though 
the mechanisms by which this occurs are not clearly 
defined due to the lack of consistent reporting of the pre-
treatment process on inhibitor concentrations.

Finally, it is well-known that the initial microbial inocu-
lum has a significant effect on the methane yields. How-
ever, due to a lack of commercial anaerobic seaweed 
digesters with acclimatised sludge, a mixture of terres-
trial inocula have been utilised in the literature that may 
lack required functionality for marine polysaccharide 
hydrolysis and inhibitor tolerance. The development of 
marine inspired inocula may be necessary to find the 
required diversity for complete seaweed degradation. 
Studies with marine sediments have shown improved 
methane yields compared to wastewater sludge [70, 106, 
148]. These studies indicate a potential reservoir of pre-
acclimatised microbes with the required functionalities 
for the anaerobic digestion of seaweed may be available. 
The understanding of acclimatised sludge would poten-
tially significantly increase biomethane yields at minimal 
extra expense that could improve the commercial viabil-
ity of the bioenergy process.

Conclusions
Anaerobic digestion is largely the method of choice for 
biomass to energy conversion for feedstocks with high 
water content [104], such as seaweed as it readily toler-
ates biomass with high moisture content without the 
energy drawbacks from dewatering and drying as well 
as from an infrastructure and engineering perspective. 
There is a great potential for the substitution of conven-
tional substrates with cultured seaweed biomass [97]. The 
majority of researchers evaluating the suitability of sea-
weed for anaerobic digestion agree it is generally appro-
priate [38]. Further research is required to improve the 
absolute methane yields from seaweed in a cost-effective 
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manner before wider adoption can be viable. However, 
methane production from seaweed is currently unprofit-
able primarily due to low methane yields.
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