Skip to main content

Table 1 Component representation of the state vectors of a national EESS

From: A coupled technological-sociological model for national electrical energy supply systems including sustainability

\( {\boldsymbol{u}}_0\in {\varOmega}_{u_0} \)\( {\boldsymbol{u}}_0=\left(0<{i}_0^{\prime }<{i}_0;0<{n}_0<\frac{1}{2}{j}_0^{\ast };{j}_0^{\ast }={i}_0-{i}_0^{\prime };0<{k}_0^{\ast }<\frac{1}{2}{j}_0^{\ast}\right) \)
Basis: polychromatic system consisting of base modules I and II
\( {\boldsymbol{u}}_I\in {\varOmega}_{u_I} \) and \( {\boldsymbol{u}}_I\notin {\varOmega}_{u_0} \)\( {\boldsymbol{u}}_{\mathrm{I}}=\left({i}_0^{\prime }={i}_0;{n}_0=0;{j}_0^{\ast }=0;{k}_0^{\ast }=0\right) \)
Basis: monochromatic system from base module I
\( {\boldsymbol{u}}_{II}\in {\varOmega}_{u_{II}} \) and \( {\boldsymbol{u}}_{II}\notin {\varOmega}_{u_0} \)\( {\boldsymbol{u}}_{\mathrm{II}}=\left({i}_0^{\prime }=0;{n}_0=1;{j}_0^{\ast }={i}_0;{k}_0^{\ast}\ge 1\right) \)
Basis: monochromatic system from base module II