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Abstract

Background: Wind power forecasts of the expected wind feed-in for the next hours or days are necessary to integrate
the generated volatile wind energy into power systems. Most forecasting models predict in some sense the best
value, but they ignore the other possible outcomes which may arise because of forecasting uncertainties. Probabilistic
forecasts, on the other hand, also predict a distribution of possible outcomes with their respective probabilities that
specific power values will occur and therefore have higher information content. In this work, we address two
problems that hinder the introduction of probabilistic forecasts in practice: (1) no measurement data are available for
some wind farms and (2) the flexible aggregation of probabilistic forecasts for changing wind farm portfolios.

Methods: We present an approach based on copulas that can solve both problems by modeling the spatial
correlation structure between reference wind farms. By sampling from the resulting joint probability distribution,
probability forecasts can be upscaled from reference wind farms to wind farms without power measurements.
Furthermore, the results can be aggregated to probability forecasts of portfolios of arbitrary and changing size.

Results: We perform experiments by applying our procedure to three use cases. The results are quantitatively
evaluated with different probabilistic scores. For single target wind farms, our approach is as good as a state-of-the-art
reference even if no data are available for the wind farm under consideration. For portfolios, our approach also allows
forecasts to be made if no data is available for some wind farms and also to aggregate flexible portfolios of changing
sizes, which was not possible before.

Conclusion: Our work solves two problems that hindered the introduction of quantile probabilistic forecasts in the
application. This work opens a pathway for many different applications, e.g., predictive grid securities with stochastic
optimization, better marketing of renewable energies, or allow to compensate for forecast errors in various
applications.
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Introduction
Forecasts are an essential tool to integrate renewable ener-
gies into the energy system. The operation of the power
supply system involves the complex interaction of gener-
ators, consumers, and power transmission in the power
grid to balance demand and supply at each time and any
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location. This can only be achieved by exactly planning the
operation of the equipment in detail. To this end, many
tasks in the power grid require looking from minutes up
to days into the future. The spatially and temporally fluc-
tuating supply of wind energy, which is both volatile and
uncertain, poses significant challenges for the power sup-
ply. The challenges are increasing with the rapid growth
of this energy source. Being able to calculate these fluc-
tuations in advance is essential for a reliable, sustainable,
and economical power supply. Wind power forecasting
is, therefore, necessary for integrating the ever-increasing
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wind energy supply into the power system. Defined more
precisely, short-term wind power forecasting is the esti-
mation of the expected power output of single wind tur-
bines, wind farms, or a group of wind farms for the next
few minutes up to several days. An overview of wind
power forecasting can be found for example in the work
of Monteiro et al. [1] and Foley et al. [2]. For the sake
of simplicity, we do not use the term “short-term” in the
following and refer to wind power forecasting only.
Probabilistic forecasts take forecast uncertainties into

account and have a particular high information content.
Conventional forecasts predict single values in the future
for each point in time and are therefore called point fore-
casts or deterministic forecasts. They do not take into
account that the forecast is actually subject to uncer-
tainty and that other values besides the “best” estimate
also have some probability of occurrence. Probabilistic
forecasts quantify this uncertainty by predictingmany val-
ues for each point in time and assigning probabilities to
each of these values or predicting a continuous probabil-
ity distribution. Probabilistic forecasts take possible risks
into account and therefore support a secure, efficient, and
cost-effective power supply. The methods can be applied
in many forecast areas, e.g., the operation of the electri-
cal grid, trading on the electricity market, the provision
of control energy, and the optimal use of storages [3]. An
overview of probabilistic wind power forecasting can be
found in the works of Zhang et al. [4] and Bessa et al.
[3]. Probabilistic wind power forecasts can be divided into
physical- and statistical-based categories. Physical-based
probabilistic forecasts use ensemble weather forecasts
that are converted to power and calibrated to observations
[5–7]. Statistical forecasts use historical weather predic-
tions and measurements and derive intervals, quantiles,
or distributions by statistical or machine learning meth-
ods [8–12]. A challenge of statistical methods that are
used in this work is to model the joint distribution of
several wind farms and to aggregate them correctly. Prob-
abilistic forecasts of aggregated wind power have been
studied by [13, 14]. These works assume, however, that
measurements of all wind farms are available. The cen-
tral assumption of the present work is that measurements
are only available for individual wind farms (reference
wind farms) and that the forecasts of the remaining farms
must be determined by upscaling as it is often the case in
practice.
Upscaling is used to supplement missing information

from individual wind farms [15]. State-of-the-art forecasts
require measured power data of wind farms to train the
forecast models. If no data is available for some wind
farms, upscaling is used for deterministic forecasts, which
is a kind of extrapolation from the wind farms with avail-
able data (“reference wind farms”) to wind farms without
data (“target wind farms”). In a second step, forecasts for

portfolios or regions may be created by summing up the
forecasts of individual wind farms (in the following called
“aggregation”).
The combination of upscaling and aggregation for prob-

abilistic forecasts was not studied before. The technique
used for deterministic forecasts cannot be applied to
probabilistic forecasts. In the case of deterministic fore-
casts, the value under consideration is only one sin-
gle expectation for each time step. There exist several
methods to extrapolate such scalar quantities. Also, the
aggregation of deterministic forecasts is straightforward
because, as required, the sum of estimated values yields
the estimated value of the sum. In the probabilistic case,
however, we have insteadmany values with assigned prob-
abilities, which are additionally linked by their correla-
tions. Upscaling and aggregation—or more generally the
combination of probabilistic forecasts—thus have to be
applied on very high dimensional joint probability distri-
butions.
The mathematical framework to combine different

probabilistic forecasts is the theory of copulas [16]. A
copula is a function that separates a joint distribution of
stochastic variables in the marginal distribution and the
dependencies between the stochastic variables (“copula”)
and thus can describe stochastic dependencies of joint
distributions as the correlation between probabilistic fore-
casts at different locations mentioned above. The theory
of copulas is used in this work to transform the forecasts
into a form for which upscaling and aggregation can be
applied similarly as they are applied in the deterministic
case. Aggregated power forecasts based on copulas have
been studied by [13, 14]. Gaussian copulas have been used,
for example, by [17, 18] to model the statistical interde-
pendence of probabilistic wind power forecasts. The prob-
lem of flexible aggregations and upscaling has not been
considered yet.
With our article, we address two essential questions

that frequently arise in the practical use of probabilistic
forecasts:

• How can aggregated probabilistic forecasts be made if
not all wind farms have measurement data?

• How can probabilistic forecasts be aggregated if the
size of the wind farm portfolio changes?

According to the authors’ assessment, both questions have
not yet been answered in the existing literature.
The article is structured as follows:

The “Method” section explains our approach, i.e.,
how to make probabilistic forecasts for wind farms
without measurements and how to make
probabilistic forecasts for portfolios based on
forecasts of individual farms.
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The “Verification” section introduces the evaluation
measures for the probabilistic forecasts and describes
the methods used to verify the results.
The “Data” section presents the data used for the
experiments.
The “Experiments” section presents the set up of the
experiments we use to test and evaluate the methods.
The “Results” section presents the results of the
experiments as well as their evaluation and
interpretation.
The “Discussion” section highlights the results and
the importance of the work in current research
aspects.
The “Conclusion and future work” section
summarizes the work and gives an outlook on how
the algorithms can be further developed.

Method
In this chapter, we describe a method to generate prob-
abilistic forecasts of all wind farms in a portfolio. The
method is based on the probabilistic forecasts of only
some reference wind farms. Optionally, the method can
be used to aggregate them to the total generation of the
whole wind farm portfolio.
As seen in Fig. 1, we propose the following steps to cre-

ate probabilistic forecasts for all wind farms in a portfolio,
even if measurements of some wind farms are missing:

1 Create probabilistic forecasts for all reference wind
farms

2 Derive the copulas from the probabilistic forecasts
and the observations

3 Draw scenarios from these copulas
4 Upscale the scenarios to all target wind farm locations
5 Calibrate the forecasts
6 Optionally, aggregate the forecasts of all wind farms

For each step, different inputs are needed, and a general
overview of those inputs with a short description where
and why the input is needed can be found in Table 1.

Probabilistic forecasting
The uncertainty of forecasts can be described by different
quantities, such as probability distributions, quantiles, or
scenarios. Quantiles describe the probability of particu-
lar power levels being exceeded. Scenarios or trajectories
describe possible alternative future developments and also
contain information about spatial dependencies. Tempo-
ral dependencies are not crucial for our application and
are therefore not considered. The scenarios created in this
paper are uncorrelated in time, which does not imply any
restriction for the described method. Here, we use quan-
tiles to describe the uncertainty of individual forecasts
[19] and use scenarios to describe the uncertainty and
mutual correlations of forecasts formany wind farms. Sce-
narios are used for upscaling and aggregation; quantiles
are not suitable for this because they do not contain spatial
dependencies.
Quantiles are points that divide the range of probability

distributions into intervals with specific probabilities. The
quantile qα for nominal probability α divides the value
range of the possible power values in such a way that with
a probability of α the observations lie below the value of
this quantile.

Fig. 1 The flow diagram of the proposed method shows the main steps as well as its details
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Table 1 Overview of the input variables for the various steps of the algorithm

Variable Meaning Input for

xt Wind speed at hub height for a given time step t Probabilistic forecasts

yt Observed power of the wind farm a given time step t Probabilistic forecasts, calibration

q(i)
α,t Probabilistic forecast of a reference wind farm i for a given time step t and a given quantile α Determining the copula, calibration

y(i)ref,t Observed power of the reference wind farm i for a given time step t Determining the copula

di,j Distance between wind farm i and j Upscaling

deff Effective distance vector, i.e., a scaled distance allowing to tune relative contribution Calibration

The symbol of the variable, its meaning, and the corresponding process step are listed

To predict the quantiles, the following optimization
problem has to be solved for each quantile [19]:

θ̂α = arg min
θα

∑

t
ρα(yt − qα(xt ; θα))), (1)

with the observed power yt as target for all time steps t
and the check function

ρα(x) = x · (α − 1x<0). (2)

The indicator function 1x<0 is 1 for x < 0 and 0 oth-
erwise. The function is optimized with respect to the
parameters θα . We have chosen the wind speed forecast
at hub height as the predictor xt with the forecast time t.
Schreiber and Sick [20] have shown that for a day-ahead
forecast, wind speed is by far the most important predic-
tor variable. All other predictors play a minor role and are
therefore neglected in this study. We use quantile regres-
sion neural networks to build and train a model for Eq. (1)

[21]. Figure 2 shows the resulting quantile time series qα,t
together with the observed power time series yt .

Determine the copula
The quantile forecasts of the preceding section do not
describe the correlations between individual sites. How-
ever, this information is crucial for upscaling and aggre-
gation. Copulas can be used to describe the correlation
structure between the wind farms [16]. More precisely, we
use Gaussian copulas to estimate the covariance matrix
of the forecast uncertainty between the wind farms. We
choose Gaussian copulas, as they help to understand and
follow each step of our method more easily. Selecting
another, e.g., Student’s t or vine copula, would not change
other parts of the method and have therefore not been
considered here.
A similar approach was used by Pinson et al. [17] in

the time frame for generating scenarios from probabilistic

Fig. 2 The time series of a quantile probabilistic forecast. Red, observations of the power; gray, quantile intervals
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forecasts or by Papaefthymiou and Kurowicka [18] for
spatial correlations. As soon as the Gaussian copulas and,
thus, the joint distributions of all forecasts are known,
we can draw samples from the joint distribution. Those
samples can be upscaled to the target wind farms. From
the upscaled samples, the distribution can be recon-
structed.
The Gaussian copulas are determined with the four

steps shown in Fig. 1. Required data are the quantiles q(i)
α,t

of the probabilistic forecasts and themeasured values y(i)
ref,t

of all the reference wind farms i = 1, . . . , n.

Determine the cumulative distribution functions
The first step is to compute an estimate F̂(i)

t of the cumu-
lative distribution function F(i)

t of the wind farm’s power
from the quantile forecasts:

F(i)
t (q(i)

α,t) = P
[
Y (i)
t < q(i)

α,t

]
= αt . (3)

The function F(i)
t is estimated from them quantiles q(i)

α,t by
interpolating linearly between the quantiles for each time
step t and wind farm i.

Transformation to a uniform random variable
To estimate the covariance, we first have to transform
the random power variable Y (i)

t to a uniformly distributed
random variable U(i)

t with the help of the cumulative
distribution function F̂(i)

t from Eq. (3):

U(i)
t = F̂(i)

t

(
Y (i)
t

)
. (4)

We apply this equation to the observed power values
y(i)
t and get new time series u(i)

t which are uniformly
distributed, as seen in Fig. 3.

Transformation to a normal distributed variable
Next, the uniformly distributed random variable U(i)

t is
transformed to a normal distributed variable V (i)

t

V (i)
t = �−1

(
U(i)
t

)
(5)

with �−1(x) = √
2 erf−1(2x − 1) and V (i) ≈ N (0, 1). The

obtained normal distribution can be seen in Fig. 4.

Estimating the copula
Now, when all variables have been transformed into nor-
mally distributed variables, we can determine the copula
to couple the forecasts of all reference wind farms. A
Gaussian copula is given by the covariance matrix and is
calculated by

Vt = (
V 1
t , . . . ,Vn

t
)
,

�0 = I, (6)
�t = λ�t−1 + (1 − λ)VtVᵀ

t ,

with the forgetting factor λ ∈[ 0, 1) which sets the influ-
ence of previous estimates for �. Typically, with λ =
0.3, good results can be achieved. If more volatile data is
analyzed, a lower value of λ might be a better choice.
A further step is the normalization of the covariance to

compensate for slight deviations through the update steps.
This normalization step is performed by:

Fig. 3 The measurements and their designated quantiles they fall into. The ideal uniform distribution is marked with a dashed red line
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Fig. 4We can see the copula created with help of the uniform distribution shown in Fig. 3. The ideal normal distribution with mean 0 and standard
deviation 1 is shown as a red dashed line

�t � (σ tσ t
ᵀ) → �t , (7)

where � is the elementwise division and σ t is the vector
of standard deviations, i.e., the square root of the diagonal
elements of �t .
The copula for all wind farms can now be written as a

multivariate normal distribution with covariance matrix
�t and a mean vector of μt = 0.

Generate scenarios from the copula
The next step as depicted in Fig. 1 is to generate scenar-
ios from the copula. This is done by drawing m′ samples
from the multivariate normal distribution N (0,�t) esti-
mated in Eqs. (6) and (7). We choose m′ = 1000. Note
that the samples are correlated due to the covariance
matrix. Afterward, the normally distributed variables are
transformed back to variables that are distributed as the
original power values by applying the same steps as for
determining the copula, but in reverse order, see Eqs. (4)
and (5). We continue this process for all time steps. The
covariance matrix �t is updated according to Eq. (7) as
soon as new observations are available.
Next, the obtained scenarios can be upscaled to target

wind farms or be aggregated to obtain the output power
of a region or portfolio.

Upscaling
Upscaling is an estimated extrapolation of an overall result
from a partial result. It is used if not all information for
the overall result is available. In this section, we describe
an upscaling algorithm for the estimation of the feed-

in of all wind farms from some reference wind farms,
which is developed at the Fraunhofer IEE [15]. It should be
emphasized that the probabilistic upscaling used in [15]
adjusts quantiles to an already aggregated power and thus
does not show the flexibility of the method of this paper.
The upscaling algorithm uses measurements, informa-
tion about the installed capacity, and location information
from a few reference wind farms and determines the cur-
rent feed-in of all wind farms of a specific region. The
goal is to use this method for probabilistic upscaling, i.e.,
to find a probability distribution of all wind farms or the
aggregated feed-in of a portfolio.
The power y(i)

t of a target wind farm at time t is deter-
mined from the power y(j)

ref,t of the reference wind farms
weighted with different parameters,

y(i)
t = ki,t

n∑

j
sj,tai,jy

(j)
ref,t , (8)

where y(j)
ref,t is the measured wind energy of the jth of n

reference wind farms, normalized to its installed capac-
ity; sj,t is the status of the measurement (0 = faulty,
1 = okay), which automatically takes into account the fail-
ures or erroneous measurements; reference wind farms
are indexed with j, target wind farms with i. The matrix
ai,j corresponds to a distance-dependent weighting factor
which is defined as

ai,j = e− di,j
r , (9)

with di,j being the distance between the reference wind
farm j and the target wind farm i; r is an empirically
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determined attenuation factor which is set here to r =
50 km and can have different values for other setups. The
correction factor ki,t in Eq. (8) is chosen such that the sum
of the weights always is one (normalization),

ki,t = 1∑
j sj,tai,j

. (10)

This upscaling approach is applied to every single sce-
nario generated before (see the “Generate scenarios from
the copula” section). By upscaling these scenarios to the
target wind farms, we extend each scenario (comprising
only the set of reference farms prior to the upscaling) to a
scenario comprising all wind farms (reference farms and
target farms). The upscaled quantities and the extended
scenarios respectively can be used in one of two ways:

• The upscaled power values at a target wind farm can
be used to construct a quantile forecast for this farm,
comprising the quantiles q̃(i)

α,t .• The extended scenarios can be used to construct a
quantile forecast for all wind farms or to aggregate
scenarios from a portfolio. This is done by summing
up the scenarios and estimating the quantiles from
the sum.

Calibration of upscaled probabilistic forecasts
If the observed frequency of measurements does not
match the predicted probability, a calibration can be used
to adjust the forecast based on historical measurements
to the observations. Thus, it improves the reliability of
a probabilistic forecast. In this section, we describe how
we can calibrate the upscaled quantile forecasts and the
upscaled scenario forecasts.

Calibration of quantile forecasts
Predicted quantiles q̃(i)

α,t do not necessarily correspond to
the nominal probabilities α due to systematic errors in the
upscaling step, i.e., q̃(i)

α,t �= q̂(i)
α,t . To correct these deviations,

a calibration function q̂(i)
α,t = fα

(
q̃(i)
α,t

)
can be used which

adjusts the quantiles q̃(i)
α,t [22, 23].

For the estimation of the calibration function, we use a
quantile regression, similar to the probabilistic forecast in
the “Probabilistic forecasting” section, but with different
predictors:

θ̂α = arg min
θα

∑

t
ρα(yt − fα(q̃α,t ,deff; θα)), (11)

where ρα is the check function defined in Eq. (2). The
predictors

q̃α =
(
q̃(1)
α,t=1, . . . , q̃

(1)
α,t=T , . . . , q̃

(n)
α,t=1, . . . , q̃

(n)
α,t=T

)

are composed of different upscaled quantile forecasts of
the reference wind farms with a leave-one-out procedure

as described below and an effective distance vector deff =
(deff1 1, . . . , deffn 1) with

deffk =
∑

l �=k

dk,le−dk,l/r
∑

l′ �=k e−dkl′/r
. (12)

The predictors q̃α and deff have the same length. The
parameters θα are optimized by a quantile regression. We
choose a polynomial approach for the function

fα(q̃α ;deff, θα) = θ(0)
α 1 + θ(1)

α q̃α + θ(2)
α q̃2α + θ(3)

α deff + θ(4)
α deffq̃α .

(13)

We have added successively further polynomial elements
until no significant improvement occurs. The effective
distance could be understood as follows: The further away
the reference wind farms are, i.e., the larger their dis-
tance dk,l, the smaller will be their relative contribution
to the calibration. Therefore, the calibration is depen-
dent on the distance dk,l of the target wind farm k to
all reference wind farms l. This distance dependence is
modeled analogously to the upscaling described in the
“Upscaling” section by an exponential function. Our
results in the “Results of experiment 1” section suggest
that the information provided by the entirety of all inter-
wind farm distances can be condensed into the single
quantity of the effective distance deffk .
We train the calibration function given by Eq. (11)

using leave-one-out cross-validation: First, we addition-
ally determine the upscaling for the reference wind farms.
This is done by taking successively one wind farm l out
of the set of reference wind farms {1, . . . , n}, and estimat-
ing its forecast by upscaling the forecasts of the remaining
wind farms {1, . . . , n}\{l}. As a result, the upscaled fore-
casts q̃α,t for the reference wind farms are known in
addition to the observations yt . On this data, Eq. (11) can
be trained on all pairs of measurements and upscaled val-
ues simultaneously. The result is a generalized calibration
model that is finally used to calibrate the quantile forecasts
of the target wind farms.

Calibration of scenario forecasts
We now consider the calibration of scenario members
ỹ(i,k)
t with time index t, the wind farm index i, and the
member index k. The proceduremust bemodified in com-
parison to the calibration of the quantiles. First, at each
point in time and for every target wind farm, the m′ sce-
nario members have to be sorted according to their value,
ỹ(i,k)
t → ȳ(i,k)

t , which gives ȳ(i,k)
t ≤ ȳ(i,k′)

t for k ≤ k′. For
each t and each i, the values ȳ(i,k)

t are then interpreted as
m′ quantiles with probability k/(m′ + 1) which can be cal-
ibrated with the steps mentioned above. After calibration,
the sorting has to be reversed to obtain time-consistent
scenarios again. This calibration is called ensemble copula
coupling [22].
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Aggregation
Often, the probabilistic forecasts of a portfolio have to be
determined based on forecasts of individual wind farms.
For this purpose, the individual probabilistic forecasts
must be aggregated taking into account the correlations.
Two cases can be distinguished here:

a) The aggregation of reference wind farms forecast,
which corresponds to use case 2 in the
“Experiments” section

b) The mixed aggregation of reference wind farms and
target wind farms which correspond to use case 3 in
the “Experiments” section

When aggregating the forecasts of the reference wind
farms, scenarios with members y(i,k)

t must first be deter-
mined according to steps 1–3 mentioned at the beginning
of the “Method” section with the time index t, the wind
farm index i, and the member index k. It should be noted
that the copula makes the samples of the wind farms
stochastically dependent on each other. Per member index
and time, the scenarios then simply have to be summed
up over the wind farms y(agg,k)

t = ∑
i y

(i,k)
t . If necessary,

quantiles can be determined from these scenarios.
If forecasts of reference wind farms and target wind

farms have to be aggregated, then the aggregation consists
of two sums:

y(agg,k)
t =

∑

i∈I
y(i,k)
t +

∑

j∈J
ŷ(j,k)
t . (14)

The first sum is the sum over the scenarios of the reference
wind farms I, and the second sum is the sum over the cali-
brated scenarios of the target wind farms J (I∩J = ∅). The
scenarios of the target wind farms have been estimated
by upscaling the scenarios from the reference wind farms
and their calibration, i.e., steps 4 and 5 mentioned at the
beginning of the “Method” section. If necessary, quantiles
can be determined from these scenarios.

Verification
Verification is the process of determining the quality of a
prediction or upscaling. It is the comparison of an esti-
mated quantity with an observation. The evaluation of
probabilistic predictions differs significantly from point
predictions since different attributes must be considered
for a comprehensive evaluation, see Murphy and Epstein
[24] as well as Jolliffe and Stephenson [25]. Essentially,
in addition to the proximity of the forecast to the obser-
vations, the shape of the distribution must also coincide
with the forecast uncertainties. The related attributes are
the resolution, i.e., the width of the forecast interval or
spread, respectively, as well as reliability [26]. To evalu-
ate our results, we use the continuous ranked probability

score and the reliability diagram, which are described in
the following.

Continuous ranked probability score
We use the continuous ranked probability score (CRPS) to
verify our forecasts [27]:

CRPS =
∫ ∞

−∞
[ F(y) − Fobs(y)]2 dy. (15)

F(y) is the cumulative probability of our quantile forecast,
and Fobs(y) the cumulative probability of the observation,
i.e., a step function from 0 to 1 at the observation. The
smaller the CRPS, the better are the results. For deter-
ministic forecasts, this equation simplifies to the mean
absolute error.
The continuous ranked probability skill score (CRPSS)

can be defined from the CRPS

CRPSS = 1 − CRPS
CRPSclim

. (16)

The normalization CRPSclim is the CRPS of the clima-
tology, i.e., of the distribution of the observations over
the total time period under consideration. The value
CRPSS = 1 corresponds to a perfect forecast, whereas
CRPSS = 0 characterizes a forecast that performs equal
to climatology.
For the evaluation of the results, we also use a paired

difference test, which we want to describe in the following
paragraph. It is often the case that a model a is used to cal-
culate forecasts for several locations i and that these are to
be compared to the results of another model b at the same
location. The model a gives the scores CRPSSai , and the
model b the scores CRPSSbi . If the distributions of these
scores are calculated separately and then compared, it is
difficult to estimate the significance of the difference. It is
better to calculate the paired difference score by calculat-
ing the distribution of the paired differences of CRPSSai −
CRPSSbi . We use this paired difference CRPSS to evaluate
the results of experiment 1 in the “Results” section.

Reliability diagram
We also use one of the attributes of the accurate prob-
ability forecast to verify our forecast reliability. Relia-
bility is the agreement between forecast probability and
the mean observed frequency. We represent it as a reli-
ability curve or reliability diagram, see Fig. 5 for a
schematic representation. The reliability diagram draws
the observed frequency against the forecast probability
and shows howwell the predicted probabilities are aligned
with the corresponding observed frequencies. To draw a
conclusion regarding the agreement between predicted
and observed probability, we compare the reliability curve
with a straight diagonal line, which results from the case
of a perfectly reliable forecast. If the reliability curve
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Fig. 5 Schematic reliability diagram. Blue: the observed relative frequency is plotted against the forecast probability. The black straight line
corresponds to a perfect reliable forecast

lies below this diagonal line, there is under-forecasting.
If the curve lies above the diagonal line, there is over-
forecasting. For perfectly calibrated predictions, the relia-
bility curve should be as close as possible to the diagonal
line.
To build the reliability curve from the time series of

power measurements y = (yt=1, . . . , yt=T ) and a quantile
time series forecast q̂α = (q̂α,t=1, . . . , q̂α,t=T ) with prob-
abilities α ∈ {α1, . . . ,αm}, αi ∈[ 0, 1], we proceed in the
following way:

• For each probability α ∈ {α1, . . . ,αm}, the amount
Obsi of power measurements that is equal to or less
than the corresponding quantile forecast at that time
is determined, i. e.,

Obsi =
∑

t
1(yt ≤ q̂α,t).

• The observed conditional frequency fObs,i
corresponding to probability αi is computed by
dividing that number by the total amount of
observations, i. e.,

fObs,i = Obsi
T

.

• The blue curve in the reliability diagram shown in
Fig. 5 is obtained by plotting all observed conditional
frequencies f Obs = (fObs,1, . . . , fObs,m) against
(forecast) probabilities α = (α1, . . . ,αm).

Data
In this study, 20 wind farms located in the northern part
of Germany where used, see Fig. 6. The study is based on
two data sets. The first data set contains the (current) pro-
duction, and the second data set contains the probabilistic
day-ahead forecasts of the wind farms’ production. We
use a time series with a time range over the two complete
years 2008 and 2009. The data from the year 2008 is used
to train the models; the data from the year 2009 is used to
verify the results. The temporal resolution of the data set
is 1 h.

Generation data
The ForWind - Center for Wind Energy Research pro-
vided the time series of the wind farm’s generation. It
is a simulated data set based on the COSMO-EU analy-
sis from the Germany Weather Service and the MERRA
re-analysis data from NASA [28].
COSMO-EU is the regional numerical weather fore-

cast model of the German Weather Service for the area
Europe. The data set contains various meteorological
parameters in hourly resolution with a spatial resolu-
tion of 7 km horizontally (vertical 40 grid layers from the
ground up to 24 km height).
MERRA is the abbreviation for Modern-ERa Retro-

spective Analysis for Research and Applications. It is a
NASA re-analysis for the satellite ERA using the Goddard
Earth Observing System Data Assimilation System Ver-
sion 5 (GEOS-5). The project focuses on the historical
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Fig. 6 The locations of the 20 wind farms used in the experiments (blue circles)

analysis (1979–today) of the hydrological cycle within the
atmosphere.
The MERRA data covers a more extended time range

whereas the COSMO-EU has a higher spatial resolution.
Therefore, the COSMO-EU data was used to downscale
theMERRA data to a higher resolution to yield a long time
range. In this work, we use the same data as in the work of
Baier et al. [15], in which different upscalingmethods were
compared. Thus, the studies can be easily compared. Fur-
thermore, the data set is very large, so that the number of
wind farms can be easily scaled. The following steps were
performed to generate the power time series from the two
basic data sets (it should be noted that the notation in this
chapter is self-contained but partly overlaps with the rest
of the paper):

1. Bilinear remapping. Wind velocity fields of the
MERRA re-analyses are bilinearly interpolated to the
higher resolution COSMO-EU grid.

2. Vertical extrapolation. Velocity fields are
extrapolated to an altitude h (140 m) using the
logarithmic wind profile

wremap(x, y, z = h, t) = wremap
0 (x, y, t)

ln(h/z0(x, y))
ln(h0/z0(x, y))

(17)

with the wind speed w0 at reference height h0 (50 m)
and the roughness length on the ground z0.

3. Bias correction. The reduced wind speed w′ results
from

w′(x, y, t) = σa(x, y, z = h)wremap(x, y, z = h, t)
(18)

with the BIAS σ and

ln(σa(x, y, z)) =
〈
ln

(
wref(x, y, z, t)
w(x, y, z, t)

)〉
(19)

Here a, stands for the base year (a = 2012) and 〈·〉 is
an average. The parenthesis 〈·〉 stands for the
arithmetic mean over all time steps in the base year a.
wref is the reference wind speed field which
originates from the COSMO-EU analyses.

4. Modeling the wind energy production. The
conversion of the wind speed into a wind energy
production is done via

P(x, y, t) = Pnom(x, y)�(w′(x, y, t)) (20)

with the equivalent power curve � published by
McLean [29]. Pnom(x, y) is the installed power at the
location (x, y).
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Forecast data
The wind power forecasts are based on weather fore-
casts of the weather model COSMO-EU [30, 31]. We use
the forecast run at 0:00 o’clock UTC and forecast hori-
zons from 24 to 48 h for the following day in one-hourly
temporal resolution. This data is used as input data for
our forecast model which is trained to predict a relation-
ship between wind speed and observed power to produce
probabilistic day-ahead forecasts for all wind farms as
described in the “Probabilistic forecasting” section. We
use 20 equidistant quantiles and add two lower and two
upper quantiles to resolve the tails of the distribution:

α ∈ {0.001, 0.01} ∪
{

k
m+1

∣∣∣ k = 1, . . . , 20
}

∪ {0.99, 0.999}.
(21)

A total of 24 quantiles are therefore forecasted. These 24
quantiles are inputs to the probabilistic upscaling proce-
dure.

Experiments
We conduct three different experiments, which
correspond to typical real-world use cases, to test the
performance of our method. The use cases are as follows:

UC 1: Probabilistic upscaling. Probabilistic forecasts
are done for all reference wind farms. The forecasts
of the target wind farms are done by upscaling from
these reference wind farms. This use case is relevant,
if the probabilistic forecast for a single wind farm is
required, even though no measurement data for this
wind farm exist.
UC 2: Probabilistic aggregation. All wind farms are
reference wind farms for which a probabilistic fore-
cast can be made directly. The goal is to determine
the probabilistic forecast of the total feed-in.
UC 3: Probabilistic upscaling and probabilistic aggre-
gation. Not all wind farms are reference wind farms.
In a first step, the probabilistic forecasts of the non-
reference farms are estimated by upscaling the fore-
casts from the known reference wind farms to these
target wind farms, followed by a probabilistic aggre-
gation. This use case is a mixture of use cases 1
and 2.

In the following, the three experiments which belong to
the use cases are described. All experiments are based on
20 wind farms for which measurements are available. The
wind farms are located in the northern part of Germany,
see Fig. 6 for their locations. Depending on the experi-
ment, a subset of the wind farms is used as reference wind
farms for which the power measurements were explicitly
used, whereas the remaining wind farms are target wind
farms and their power measurements were only used for
validation.

For the reference wind farms, the following information
is used:

• Location name
• Location coordinates
• Installed power
• Production data (given as synthetic time series with a

resolution of 1 h)
• Quantile forecasts

For the target wind farms, only the following information
is used:

• Location name
• Location coordinates
• Installed power

The experimental setup and execution of the experi-
ments are as follows:

Exp. 1: Probabilistic upscaling from reference wind
farms to one single target wind farm (use case 1).
The task is to forecast single wind farms based on
reference wind farms. The experiment covers 20 dif-
ferent setups which are constructed as follows: 10
setups are created by selecting 5 fixed reference wind
farms and iterating the target wind farm and 10more
setups are created by selecting one fixed target wind
farm and iterating the 5 reference wind farms. All
setups are shown in Fig. 7.
Exp. 2: Probabilistic aggregation of the forecast for
reference wind farms (use case 2). That is, it is
assumed that the data of all wind farms is available
and no upscaling is needed. The task is to determine
a probabilistic forecast for the total production based
on individual forecasts.
Exp. 3: This experiment is a combination of the two
experiments mentioned above (use case 3). In this
experiment, a mixture of reference wind farms and
wind farms without measurements are used. The
task is to estimate a probabilistic forecast for the total
production of all wind farms based on the forecasts
from the reference wind farms. The setup is shown
in Fig. 8.

We apply the method from the “Method” section to
these experimental setups. Then, we verify the forecast
results by comparing them to the observation.

Results
In the following, we present the results of the experi-
ments described in the “Experiments” section, in which
the proposed methods of the “Method” section for proba-
bilistic upscaling and aggregationwere applied. The scores
defined in the “Verification” section are used to verify and
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Fig. 7 Setup of exp. 1: reference wind farms (blue circles) and target farm (red circle). For the first 10 setups, the reference wind farms are fixed, and
for the last 10 setups, the target wind farm is fixed. The gray circles describe the unused wind farms

quantify the results. The results are presented in the order
of the experiments.

Results of experiment 1
Figure 9 shows the quantile time series of a single wind
farm for the following:

a) The upscaled forecast without calibration
b) The upscaled forecast with calibration
c) The hypothetic result of the forecast if data for this

wind farm would be available1

The observations are shown for comparison. Some special
characteristics are noticeable: The upscaled forecast has
a systematic deviation from the observations. This is an

1Only wind farm number 8 is shown.

indication that the upscaling is less reliable than the refer-
ence. The calibration significantly widens the distribution,
removes the bias, and improves the reliability. The higher
spread of the distribution is plausible since observations
are not available for target wind farms and this is reflected
in a larger uncertainty of the forecast. It should be noticed
that these deviations are particularly pronounced as rel-
atively few reference wind farms have been used. In a
real-world application, more reference wind farms would
have been selected, leading to more precise results than
depicted here.
With the reliability plots in Fig. 10, we compare the

forecasted distributions of those three forecasts to the
distribution of the observations. The diagonal would
indicate exact accordance with observations, i.e., perfect
reliability. Upscaled forecasts without calibration deviate
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Fig. 8 Setup of exp. 3: reference wind farms with measurement data (blue circles) and wind farms without measurement data (red circles). Within
this experiment, the total aggregated production of all twenty farms (with and without measurements) is considered

significantly from the expected result. Calibration brings
the distributions much closer to the correct distribution.
Quantile forecasts for the hypothetic case that observa-
tions for the target wind farms are available are only
slightly better. These results are quantified by the CRPSS
in Fig. 11. The CRPSS is calculated from Eq. (16) for all
wind farms separately and shown as box plots2, see Fig. 11
on the left for the three cases calibrated forecasts, uncal-
ibrated “raw” forecast, and reference forecast for which
observations are available.
Upscaling without calibration is often worse than the

reference. Calibration improves the results significantly,
but the bars overlap such that the significance of the
results is not clearly visible. Therefore, the paired dif-
ference CRPSS is shown in Fig. 11a box plot of the
location-wise difference between the CRPSS of the cal-
ibrated (“calibrated”) and the uncalibrated (“raw”) fore-
casts, i.e., BoxPlot(CRPSScali − CRPSSrawi ) instead of
BoxPlot(CRPSScali ) and BoxPlot(CRPSSrawi ) as in the left
figure. It can be seen that calibration leads to a signifi-
cant improvement in all but few cases. In addition, also,

2In a box plot, the central line marks the median, the bottom and top edges of
the box indicate the 25th and 75th percentiles, and the whiskers extend to the
most extreme data points. The red crosses are outliers.

the paired difference CRPSS is shown in Fig. 11b the
box plot of the difference between the CRPSS of the
calibrated and the reference forecast (“reference”), i. e.,
BoxPlot(CRPSScali − CRPSSrefi ). For most cases, the cal-
ibrated forecast is better than the reference with few
outliers.
In this experiment, we have examined the performance

of the approach if based on probabilistic forecasts of refer-
ence wind farms the probabilistic forecasts of target wind
farms are estimated based on probabilistic upscaling. We
have compared the results to reference forecasts. If the
results are calibrated, our upscaling approach is better
than the reference in most cases with only a few outliers.

Results of experiment 2
An excerpt from the quantile time series of the total
aggregated wind farm’s power together with the aggre-
gated power observations from all wind farms is shown
in Fig. 12. The chosen time range matches the one used
within the exemplary quantile time series plot of the
results of Exp. 1 that is shown in Fig. 9. The forecast seems
quite reasonable and, in general, captures the aggregated
observations quite well. At some times, however, the outer
quantiles do not seem to be broad enough to capture the
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Fig. 9 Quantile time series for one single wind farm (gray) and observations (red) for exp. 1. From top to bottom: upscaled quantile forecasts from
reference wind farms, calibrated quantile forecasts, and reference quantile forecasts trained on observations. For this plot, a week with maximal
fluctuations has been selected

observed power spectrum. This fact is also reflected in the
reliability plot given in the left part of Fig. 13, which shows
that the lower quantiles tend to be too high and that the
higher quantiles tend to be too low.
The CRPSS associated with our probabilistic forecast is

0.547, which lies slightly above the average performance
between a perfect forecast and the climatology. Since this
experiment involves neither upscaling nor calibration, the
observed deviations of the probabilistic forecast from the
aggregated observations are solely due to errors of the
underlying reference forecasts and due to the copula. This
is, for example, reflected in the lower part of Fig. 9, which
shows that on October 3, the reference forecast is not able
to adequately capture the power increase observed for this
specific wind farm on that day. The same is also true for
the aggregated forecast shown in Fig. 12 which on Octo-
ber 3 is not steep enough compared to the aggregated
observed power.
In this experiment, we have studied the performance

of our forecasting approach if the sum of the power of
all wind farms is estimated solely based on the individual

probabilistic forecasts of the involved single wind farms
(i.e., every wind farm is considered a reference wind farm)
by means of probabilistic aggregation. We found that the
approachworks quite well and that the observed errors are
most likely due to the errors of the underlying reference
forecasts.

Results of experiment 3
Figure 14 shows excerpts from the quantile time series
of the aggregated power of all wind farms (whereby the
aggregation runs over all wind farms, i.e., over farms with
and without measurement data) together with the aggre-
gated power observations from these wind farms. The
results shown in the upper part of the figure were obtained
by leaving out the calibration step of the upscaled sce-
narios of wind farms without measurements, as it was
described at the end of the “Calibration of upscaled
probabilistic forecasts” section. The results shown in the
lower part of the figure are based on additionally carry-
ing out this scenario-calibration step as opposed to the
results shown in the upper part. By comparing the two
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Fig. 10 Reliability plots of single wind farms in exp. 1 for the three cases: (a) the upscaling without calibration (blue colored circles), (b) the upscaling
with calibration (red colored squares), and (c) the hypothetic result of the forecast if data was available for this wind farm (yellow-colored diamonds)

Fig. 11 Left: the box plot of the CRPSS of exp. 1 for a single wind farm for (a) the upscaling without calibration (“raw”), (b) upscaling with calibration
(‘’calibrated”), and (c) for the hypothetic result of the forecast if observations were available for this wind farm (“reference”). Larger CRPSS values are
better. Right: box plot of the paired difference CRPSS. (a) The paired difference CRPSS of the calibrated versus the uncalibrated forecast. (b) The
paired difference CRPSS of the calibrated versus the reference forecast
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Fig. 12 Result of the probabilistic aggregation (exp. 2): quantile time series plot of the aggregated power of all reference wind farms (gray) and the
aggregated observations of these wind farms (red)

quantile forecasts shown in Fig. 14, the influence
of calibrating the upscaled scenarios can be studied
independently from the rest of the presented forecasting
framework (upscaling and aggregation).
First of all, we observe that the probabilistic forecast

obtained without calibration resembles the one that we
obtained in exp. 2 (see Fig. 12) and thereby shares its char-
acteristics regarding the systematic deviation from the
aggregated observations and the fact that some points in
time the forecast’s range is not broad enough to capture
the observed power spectrum, which is again reflected in
the reliability plot given in the right part of Fig. 13 (blue
circles). The value of the CRPSS of the probabilistic fore-
cast without calibration is 0.549 which affirms an overall
forecasting performance that is very similar to the results
obtained in exp. 2. Since the only difference between these
two results is the implementation of the upscaling step for
the wind farms without measurements in exp. 3, we come
to the conclusion that this upscaling works very well and

that the observed forecasting errors are primarily due to
errors of the underlying reference forecasts.
Taking into account the results obtained by additionally

applying the calibration step, we see that the calibration
widens the margins of the power forecast distribution in
a slight but highly reasonable way, see the right part of
Fig. 13 (orange squares). Although the lower quantiles
of the calibrated aggregated power forecast still seem to
be a bit too high and the forecast slightly tends to over-
estimate the aggregated power, the observed bias shift
resulting from the calibration improves the forecasting
performance and results in a CRPSS of 0.561.
In this experiment, we have studied the performance

of our forecasting approach if the sum of the power of
all wind farms (some with measurement data and some
without) is estimated based on the individual probabilistic
forecasts of the involved single wind farms with measure-
ment data (the reference wind farms) by means of proba-
bilistic upscaling, calibration (optional), and aggregation.

Fig. 13 Reliability plots for the quantiles of the power sum resulting from the aggregation over all wind farms obtained within exp. 2 (left side) and
exp. 3 (right side)
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Fig. 14 Result of the probabilistic upscaling and probabilistic aggregation (exp. 3): quantile time series plot of the aggregated power of all reference
wind farms and target wind farms (gray) and the aggregated observations of these wind farms (red). Upper plot: aggregated power forecast
obtained without calibrating the upscaled scenarios of the wind farms without measurements. Lower plot: aggregated power forecast obtained
with calibrating the upscaled scenarios of the wind farms without measurements (as described at the end of the “Calibration of upscaled
probabilistic forecasts” section)

In case the calibration step is skipped, the observed fore-
casting performance was very similar to the one obtained
in exp. 2. Calibrating the upscaled scenarios results in the
best performance compared to the results of exp. 2 and
exp. 3 without calibration. The CRPSS value that results
from calibration of the upscaled scenarios lies even above
the value obtained in exp. 2. This shows the significance
of the calibration step, which improves the forecast’s reli-
ability and potentially fixes errors in the correlations that
have not been modeled adequately before.
We note that the presented approach provides a funda-

mentally well-functioning way of probabilistic upscaling
and aggregation of wind farm power forecasts.

Discussion
The result of the present work is a model of the joint prob-
ability p

(
ŷ(1)
t , . . . , ŷ(n)

t

)
of the forecasts of n wind farms,

where ŷ(i)
t is the forecasted power of the nth wind farm.

It is noteworthy that also forecasts of wind farms are
taken into account, for which no power measurements
are available. For this purpose, an upscaling algorithm is
used, which is described by Baier et al. [15] and trans-
ferred here to a probabilistic case. This procedure differs
from the work of Papaefthymiou and Kurowicka [18], in
which the joint probability is formed, but measurements
of all wind farms must be available. From the model of
this work, probabilistic forecasts of arbitrarily aggregated
portfolios can be generated. In other studies, probabilistic
forecasts of aggregated power values are also considered,
but models are constructed that are only optimized for a
specific aggregation and are therefore inflexible [13, 14].
The joint probabilities in this paper are constructed based
on statistical probabilistic forecasts. The use of ensem-
bles of weather forecasts is not considered here. Like all
statistical approaches, the distributions are optimized on
historical data and cannot predict exceptional weather
events, which can be forecasted only physically. An
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essential part of the described method is the calibration
step, which especially considers the upscaling step and
significantly improves the results. This calibration is also
independent of a previously defined portfolio. The present
work extends the existing work on probabilistic forecasts
and supplements two aspects in particular: unobserved
wind farms and the aggregation of forecasts of flexible
portfolios. This novelty is especially crucial in practice.

Conclusion and future work
In this work, we have presented a novel approach to
upscale and aggregate statistical-based probabilistic fore-
casts for wind farms based on a combination of copula
theory and an upscaling method. The results have been
applied to three different use cases:

1. Estimating the probabilistic forecast of individual
target wind farms by upscaling from the probabilistic
forecast of reference wind farms

2. Estimating the probabilistic forecast for a portfolio of
reference wind farms

3. A combination of use cases 1 and 2—the estimation
of the probabilistic forecast of a portfolio of wind
farms consisting of reference wind farms and target
wind farms

We have used the data of 20 different wind farms scat-
tered around northern Germany for these experiments.
The results of the experiments are promising and show
the applicability of our approach. With our approach, the
power production of individual portfolios or regions can
be aggregated based on only a few reference wind farms,
while no measurement data of the feed-in of the portfo-
lio’s remaining non-reference wind farms is required. The
aggregation step of our method allows for a flexible cre-
ation of any required portfolio. Furthermore, the portfolio
can be modified at anytime without having to create the
forecast model from scratch again.
The aggregation step allows our method to create a

portfolio as required and to change it at anytime without
having to create the forecast model from scratch again.
Since a similar procedure has not yet been published,
there is no reference to which the quality of our approach
can be compared. We have thus presented a method that
can be used as a reference to develop the performance of
this type of forecast further.
We note that the presented statistical probabilistic fore-

cast is not about surpassing ensemble-based physical
methods. The strength of ensembles lies in its ability to
accurately predict future weather risks, while statistical
methods tend to aim for good reliability.
The presented results will be followed by further work,

e.g., the methods can be applied and verified using real
data and more reference wind farms. The method can be

applied to short-term forecasts with a forecast horizon of
less than a few hours.
Our sampling does not depend explicitly on time. The

explicit consideration of time dependencies can be taken
into account if the correlation matrix is also extended to
the temporal dimension, as described in Pinson et al. [17].
Many applications are possible, e.g., predictive grid

security with stochastic optimization, marketing of
renewable energies, dimensioning of control power to
compensate for forecast errors, optimal operation of elec-
tricity storage facilities, and many more. The method
presented closes an important gap in the application of
probabilistic forecasts and thus opens up a broader field
of potential applications.

Notation
q: Quantile forecast; q̃: Upscaled quantile forecast; q̂:
Upscaled and calibrated quantile forecast; x: Predictor
(e.g., wind speed); y: Measured power; ys: Power of a port-
folio; α: Nominal probability; �t : Variable at time t; T :
Number of time steps; �(i)

t : ith wind farm at time t; �(i,k)
t :

kth member for wind farm i at time t; n: Number of refer-
ence wind farms; m: Number of quantiles; m′: Number of
scenarios; F̂ : Estimated cumulative distribution function;
�: Covariance matrix; r: Radius of influence; dij: Distance
between wind farm i and j.
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