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Sustainable energy recovery from thermal 
processes: a review
Weidong Chen, Zhifeng Huang and Kian Jon Chua* 

Abstract 

Background:  With the increasing concerns on the energy shortage and carbon emission issues worldwide, sustain-
able energy recovery from thermal processes is consistently attracting extensive attention. Nowadays, a significant 
amount of usable thermal energy is wasted and not recovered worldwide every year. Meanwhile, discharging the 
wasted thermal energy often causes environmental hazards. Significant social and ecological impacts will be achieved 
if waste thermal energy can be effectively harnessed and reused. Hence, this study aims to provide a comprehensive 
review on the sustainable energy recovery from thermal processes, contributing to achieving energy security, envi-
ronmental sustainability, and a low-carbon future.

Main text:  To better understand the development of waste thermal energy utilization, this paper reviews the sustain-
able thermal energy sources and current waste energy recovery technologies, considering both waste heat and cold 
energy. The main waste heat sources are prime movers, renewable heat energy, and various industrial activities. Dif-
ferent waste heat recovery technologies to produce electricity, heating, and cooling are analyzed based on the types 
and temperatures of the waste heat sources. The typical purposes for waste heat energy utilization are power genera-
tion, spacing cooling, domestic heating, dehumidification, and heat storage. In addition, the performance of different 
waste heat recovery systems in multigeneration systems is introduced. The cold energy from the liquified natural gas 
(LNG) regasification process is one of the main waste cold sources. The popular LNG cold energy recovery strategies 
are power generation, combined cooling and power, air separation, cryogenic CO2 capture, and cold warehouse. Fur-
thermore, the existing challenges on the waste thermal energy utilization technologies are analyzed. Finally, potential 
prospects are discussed to provide greater insights for future works on waste thermal energy utilization.

Conclusions:  Novel heat utilization materials and advanced heat recovery cycles are the key factors for the devel-
opment of waste high-temperature energy utilization. Integrated systems with multiply products show significant 
application potential in waste thermal energy recovery. In addition, thermal energy storage and transportation are 
essential for the utilization of harnessed waste heat energy. In contrast, the low recovery rate, low utilization efficiency, 
and inadequate assessment are the main obstacles for the waste cold energy recovery systems.

Highlights 

1.	 Industrial waste heat supply technologies and their exhaust features are reviewed.
2.	 Waste thermal heat recovery technologies are summarized and reviewed.
3.	 Thermal cold energy recovery technologies are summarized and reviewed.

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

Energy, Sustainability
and Society

*Correspondence:  mpeckje@nus.edu.sg

Department of Mechanical Engineering, National University of Singapore, 9 
Engineering Drive 1, Singapore 117576, Singapore

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13705-022-00372-2&domain=pdf


Page 2 of 25Chen et al. Energy, Sustainability and Society           (2022) 12:46 

Background
With increasing concerns on fuel scarcity and environ-
mental deterioration, more and more research attention 
has been drawn towards enhancing the waste heat recov-
ery performance in industrial thermal processes, thereby 
improving fuel utilization efficiency [1]. It is reported 
that around 63% of consumed global primary energy is 
wasted during fuel combustion and heat transfer pro-
cesses. Significantly, a major part of the wasted energy is 
identified as recoverable waste thermal energy [2]. Thus, 
research on waste thermal energy utilization is urgent 
and imperative.

The usable waste/renewable thermal heat sources are 
usually obtained from fuel-driven prime movers, renewa-
ble heat energy, data centers, and various industrial activ-
ities [3]. Clemens et al. [2] estimated that approximately 
246 EJ potential waste heat energy was lost in 2012 
worldwide. The distributions of waste heat with different 
temperatures are illustrated in Fig. 1. It is observed that a 
large amount of usable waste heat energy with high tem-
peratures is wasted in various sectors. In the industrial 
sector, Miro et al. [4] illustrated that, in Fig. 2, the indus-
trial waste heat potential and total energy consumption 
by countries worldwide. Unlike utilizing the waste heat 

from commercial or residential buildings, recovering the 
waste heat from industrial activities is more challenging. 
This is because the industries are usually located far from 
the consumers, which leads to thermal energy storage 
and transport issues. Papapetrou et al. [5] further give a 
provision of the industrial waste heat recovery status. The 
waste heat generated from various industrial activities, 
such as steel and chemical industries, is usually stored in 
thermal storage systems. Subsequently, the stored ther-
mal energy can be utilized to generate electricity, cool-
ing, or domestic heating by employing various waste heat 
recovery technologies. Sensible and latent heat storage 
technologies are the typical waste heat storage methods 
[6]. The working principals of sensible heat storage are to 
directly increase the storage material’s temperature. For 
example, cold water can be used as a sensible heat storage 
material. The generated hot water can be employed as a 
heat source to produce useful heating or cooling. How-
ever, it is noteworthy that some heat will be dissipated to 
the ambient due to unavoidable entropy generation by 
employing sensible storage technologies. Comparatively, 
employing phase change materials is the main feature 
of the latent heat storage technology. It is inevitable that 
energy loss occurs during the phase-changing process. In 

4.	 Challenges and prospects of sustainable energy recovery are analyzed.

Keywords:  Sustainable energy, Waste heat recovery, Waste cold recovery, Multigeneration system, LNG

Fig. 1  Distributions of waste heat with different temperatures [2]
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addition, utilizing some phase change materials is corro-
sive and may damage the storage equipment [6]. Further-
more, the energy loss during the transportation of heat 
energy over a long distance is reported to be significant. 
This is because a major part of heat is dissipated into 
the ambient when the temperature and distance exceed 
300  °C and 10  km, respectively [7]. Therefore, heat loss 
is unavoidable during the heat storage and transportation 
processes. The heat loss analysis by employing heat stor-
age system need to be conducted based on the specific 
application conditions.

Muñoz et  al. [8] reviewed multigeneration systems’ 
solar thermal energy utilization statuses. Research shows 
that an advanced solar integrated combined cycle con-
tributes to improving the system’s efficiency. However, 
the high initial investment of equipment installation and 
long payback period impedes the development of renew-
able solar utilization. Furthermore, DeLovato et  al. [3] 
discussed the applications and challenges of harnessing 
geothermal to improve power plants’ efficiency. Their 
findings indicate that the efficient utilization of renew-
able geothermal energy is still infant, although it may be 
a promising technology in the future. There are many 
existing reviews on industrial activities and renewable 
thermal utilization. Comparatively, reviews consider-
ing both fuel-driven prime movers and their waste heat 

recovery subsystems in residential and commercial are 
few and inadequate. However, they are imperative for the 
development of waste thermal heat energy utilization.

Waste cold energy recovery is another aspect that has 
raised public interest in recent years. Natural gas is the 
only fossil fuel rising in the past 10 years and is expected 
to be the most consumed fossil fuel by 2035 [9], as shown 
in Fig. 3. It is worthy to note that primary energy com-
prises commercially traded fuels and excludes traditional 
biomass. Pipeline and liquified natural gas (LNG) are the 
two dominating methods to transport natural gas. LNG 
is first stored at a very low temperature (− 162 °C) which 
releases a large amount of cold energy (830 kJ/kg) when it 
is regasified to natural gas. High-quality LNG cold energy 
is often dumped into the ocean and becomes an envi-
ronmental hazard if LNG is vapored by the conventional 
Open Rack Vaporizers (ORVs). The LNG trade has pro-
jected a more robust growth than the pipeline trade due 
to the market flexibility and energy independence issues, 
as presented in Fig. 4 [10]. In 2010, the total natural gas 
trade was about 737.7 billion cube meters, and only 41% 
(338.8 billion cube meters) of the natural gas was traded 
by the LNG. However, the share of LNG trade exceeded 
the pipeline trade and occupied about 52% in 2020. 
According to the current global LNG trade quantity, the 
available cold energy can potentially reach as high as 

Fig. 2  Industrial waste heat potential worldwide [4]



Page 4 of 25Chen et al. Energy, Sustainability and Society           (2022) 12:46 

9211 MW. Hence, recovery of the cold energy during the 
LNG regasification process is challenging research wor-
thy of being pursued.

The recovery of waste heat and cold energy is equally 
important as they can contribute to primary energy 
savings and reduce the hazards being exhausted into 
the environment. Thus far, a comprehensive review of 
the current status of both waste heat and cold energy 
recovery systems is still lacking. Specifically, this paper 

provides a comprehensive perspective on understanding 
the existing waste thermal energy recovery technologies, 
summarizing their current application statutes, and dis-
cussing the deficiencies and potential developments. The 
waste thermal energy sources, including both heat and 
cold sides, are first briefly introduced. Key waste energy 
recovery technologies are then reviewed. Subsequently, 
the existing challenges of the current systems and poten-
tial developments are presented and discussed.
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Fig. 3  Share of world primary energy consumption [9]
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Page 5 of 25Chen et al. Energy, Sustainability and Society           (2022) 12:46 	

Current status on waste thermal energy recovery
Heat energy recovery
In the early 1970s, the severe Middle-East oil crisis had 
led to a sharp increase in fuel prices in the industry. 
Thus, the efficient utilization of fuel has overwhelmingly 
attracted researchers’ attention [11]. In addition, with 
more significant concerns placed on environmental sus-
tainability, recovery energy from dissipated waste heat by 
fuel-burning processes became a pressing issue. Conse-
quently, significant research efforts have been devoted to 
the high-efficient utilization of the fuel by recovering the 
exhausted waste heat energy. At this moment, the utiliza-
tion of renewable thermal energy at a large scale is still 
considered at its infancy stage. Comparatively, the prime 
movers deployed in residential and commercial areas 
have constantly produced a significant amount of ther-
mal heat energy. The schematic flow chart for various 
energy recovery technologies is illustrated in Fig. 5.

Prime movers
Prime movers generate electricity or mechanical power 
while simultaneously producing waste heat. A good 
understanding of the prime movers contributes to 
improving waste heat utilization. This is because waste 
heat recovery processes are primarily aimed to enhance 

the prime movers’ efficiencies. In addition, the tem-
peratures and types of dissipated heat have significant 
impacts on heat recovery performance. The structures, 
working principles, and generated heat features of gas 
turbines, internal combustion engines, Stirling engines, 
steam turbines, and fuel cells are discussed and presented 
in this section.

Gas turbine  Gas turbines (GT) are deemed one of the 
cleanest technologies to produce heating and electricity, 
since their emissions of NOx and CO2 are much lower 
than other commercial combustion-type prime movers. 
The gas turbine is known to operate based on the Brayton 
cycle. In the Brayton cycle, atmospheric air is compressed, 
heated, and mixed with fuel in the combustor. The mixed 
air and fuel are then burned. The expanded gas is then 
employed to operate the turbine to generate electricity. 
Accordingly, the fuel energy is converted to mechanical 
energy, with electricity generated. The dissipated super-
heated exhaust can be further exploited to produce heat-
ing or cooling. Figure 6 shows the schematic diagram of a 
gas turbine cum CNG supply system [12]. Firstly, the air 
is compressed into the combustor and mixed with fuel. 
The mixed gas is combusted to drive the turbine to gener-
ate electricity. Then, the burned gas is used to increase 

Fig. 5  Flow chart for various energy recovery technologies
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the temperature of compressed air and produce hot water. 
The exhaust fuel gas is then dissipated into the ambient.

Internal combustion engine
Internal combustion engines (ICE) [13] are the most 
common form of heat engines. Spark ignition (SI) and 
compression ignition (CI) are the typical reciprocating 
engines. Compression ignition engines employ heavy oil 
and diesel oil as fuel, posing severe emission issues. In 
contrast, spark ignition uses natural gas as fuel. In the 
ICE’s combustion chamber, the superheat gases expand 
with high pressure to provide the mechanical energy to 
generate electricity. At the same time, a heat exchanger 
is employed to recover the waste heat from the exhaust 
gas. Figure 7 presents a schematic diagram of an internal 

combustion engine. The waste heat recovery processes 
are accomplished by cooling down the oil, water, and 
exhaust gas. In general, the fuel is burned to produce 
electricity. The thermal energy from the exhausted gas 
is harnessed by a heat exchanger to produce hot water. 
Lube oil heat exchanger and jacket water heat exchanger 
are employed to recover the waste heat from lube oil and 
water. Accordingly, the engine is cooled.

Stirling engine  A Stirling engine (SE) [14] can cyclically 
compress and expand the working fluid at different tem-
peratures. Consequently, a net conversion of heat energy 
to mechanical energy is realized. The working fluid is 
continuously circulated inside the engines in the closed 
regenerative Stirling cycle. In other words, the combus-

Fig. 6  Schematic of a gas turbine system with CNG supply and heat recovery system

Fig. 7  Schematic of an internal combustion engine
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tion products do not contact the working fluid or any 
internal parts. A Stirling engine is able to utilize toxic fuels 
(landfill gas) as its primary energy source. Figure 8 pro-
vides a schematic diagram of a Stirling engine. Accord-
ingly, it consists of a combustor, a generator, and two heat 
exchangers. One exchanger utilizes the water heat from 
the exhausted gas. The other one is employing coolant to 
cool down the Stirling engine.

Steam turbine  A steam turbine (ST) [15] utilizes the 
thermal energy from high-pressure steam to produce 
mechanical energy. The steam is generated in the boiler 
and then expanded into the turbine. It provides thermal 
heat, while electricity is the byproduct of the steam tur-
bine during the steam generation process. Therefore, the 
steam turbine is also adopted as a recovery subsystem 
to utilize the waste steam energy to produce electricity. 
Figure 9 presents the schematic diagrams of two typical 
steam turbines.

Fuel cell  Unlike the traditional combustion method in 
prime movers, a fuel cell (FC) converts chemical energy 
into electricity in a different way, along with waste heat 
generated. William Grove firstly invented a fuel cell in 
the 1830s [16]. However, the interest in this technology 
has been relatively subdued for more than one hundred 
years. It is only recently that the desire for a power system 
that yields high efficiency while producing low emissions 
places the FC technologies at the forefront of research. 
Unlike batteries that provide energy with limited stored 
energy, the FC system is capable of generating electricity 
and heat simultaneously. Figure 10 shows the schematic 
diagram of a fuel cell. Briefly, the fuel and air are fed to 
the anode and the cathode, respectively. Then, a catalyst at 
the anode side separates hydrogen molecules into protons 

and electrons. After that, the electrons move through an 
external circuit. Consequently, electricity is generated. It 
is noteworthy that fuel cells usually incorporate the ORC 
cycle as the bottoming cycle to further improve the elec-
tricity generation efficiency [17].

Prime movers are widely deployed for commercial and 
residential applications. It is observed from the exhaust 
of most prime movers that the recoverable waste is 

Fig. 8  Schematic of a Stirling engine

Fig. 9  Schematic diagram of a back-pressure steam turbine; b 
extraction-condensing steam turbine
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Fig. 10  Schematic diagram of a fuel cell

Table 1  Typical types of different prime movers

ICE [21] SE [22] GT [23] ST [24] FC [25]

Capacity (kW) 10–18,000 1–55 500–300,000 100–250,000 5–1400

Electric efficiency (%) 27–41 20–35 22–36 6.27–7.31 35–42.5

Fuel type NG, biogas, propane ALL NG, biogas, propane, oil All Hydrogen, NG, propane, 
methanol

Thermal product Hot water, low-pressure 
steam

– Hot water, low-pressure 
steam, high-pressure steam

Low-pressure 
steam, high-
pressure 
steam

Hot water, low-pressure 
steam, high-pressure steam

Temperature of dis-
sipated heat (°C)

350–648 – 380–550 147–192 371

Exhaust flow (kg/h) 0.5–55 – 67–474 9094–224,285 –

Advantages Fast start-up Low noise, 
maintenance, and 
vibration

High-quality thermal output Lifetime is 
very long 
(more than 
50 years)

Low emission
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usually in the form of superheated steam/gas, hot water, 
or harnessed from solid carriers. An appropriate heat 
recovery system can be designed and engineered to pro-
duce cooling, heating, or electricity based on the quality 
of waste heat types and temperatures. It is noteworthy 
that recovering waste heat from supercritical Brayton 
cycles using CO2 has gained significant research atten-
tion in recent years [18–20]. The typical types of prime 
movers and their features are listed in Table 1.

Recovering waste heat
The grade of the waste heat must be judiciously con-
sidered during the employment of heat recovery tech-
nologies. That is because different technologies achieve 
optimal heat recovery performance at different tem-
perature ranges. Conventionally, the waste heat energy 
is categorized into (1) low-temperature range (< 100 °C), 
(2) medium-temperature range (100–300  °C), and (3) 
high-temperature range (> 300  °C) [2]. In addition, the 
capacities of the heat recovery system are highly depend-
ent on the quantity of the waste heat and the consumers’ 
demands. Thermal energy storage systems such as heat 
exchangers or thermal materials are classified as passive 
heat recovery technologies. In contrast, heat recovery 
technologies that transfer heat to other forms of energy 
are labelled as active technologies [26]. Typically, waste 
heat is recovered to produce cooling and domestic heat-
ing simultaneously. However, some heat recovery systems 
are designed to utilize waste heat to generate electricity.

Recovering waste heat to generate electricity  (A) Organic 
Rankine cycle

An organic working fluid with a low boiling point is 
employed in the Organic Rankine cycle (ORC) to gen-
erate electricity by feeding on the thermal energy from 
a low-grade waste heat source [27]. Figure  11 shows 
the schematic and T-s diagram of an ORC. Firstly, the 
organic working fluid with a low boiling point is pumped 

into the evaporator. Then, the evaporated working fluid 
flow through an expander. After that, the working mate-
rial pass through a condenser and then is condensed. 
Different working fluids have been employed in ORC, 
including HCFC123, PF5050, HFC-245fa, HFC245ca, 
isobutene, and aromatic hydrocarbons [28]. Research 
has shown that ORCs are able to better recover ther-
mal energy from lower temperature heat sources than 
the conventional steam Rankine cycle. ORCs are usually 
installed to harness waste heat from gas turbines, com-
pressor stations, and metal industries. The key impedi-
ment of wide-scale ORCs deployment is the long payback 
period [29].

(b) Kalina cycle
A Kalina cycle (KC) employs ammonia/water as its 

working fluid pair and utilizes thermal energy to generate 
electricity. Alexander Kalina invented the Kalina cycle in 
the 1980s. Figure 12 presents a schematic diagram of the 
Kalina cycle. The Kalina cycle is basically an improved 
Rankine cycle. The components of a Kalina cycle include 
a boiler, a turbine, a distiller, a reheater, an absorber, a 
condenser, a feed water heater, and a separator. In addi-
tion, the Kalina cycle is able to utilize mixed water and 
ammonia as working fluids. Greater details on the work-
ing principle of the Kalina cycle are documented in the 
literature [31]. Both ORC and Kalina cycles are derived 
from the basic Rankine cycle. Research results have 
shown that the Kalina cycle is able to achieve 15–50% 
more power than the ORC. However, it is worthy to note 
that the ORC technology is considered a mature technol-
ogy and has been commercially deployed worldwide. The 
Kalina cycle is still not commercially deployed [32].

(c) Thermo-electric generator system
A thermoelectric generator (TEG) generates electric-

ity based on the temperature differences between two 
materials [33]. Figure 13 shows the schematic diagram of 
a TEG. The main working principle of the thermoelec-
tric generator is converting the heat directly to voltage. 

Fig. 11  Schematic diagram of ORC and T-s diagrams a subcritical; b transcritical [27, 30]
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It mainly consists of a heat source, a cool side, and ther-
moelectric materials. When providing a heat source, the 
holes and electrons move in a specific direction. Then, 
the electricity is generated. It is an environmentally 
friendly technology that does not involve any working 
fluids or chemical products. In addition, TEGs operate 
without noise, since they do not have moving parts. It is 
highly resilient and has a long operating lifetime. In gen-
eral, the application potential of TEG is significant. For 
example, it can be used in zero-gravity conditions, deep-
sea applications, wearable devices, or other industries.

Recovering waste heat to  produce cooling  Absorption 
and adsorption chillers are well-known technologies that 
are employed to recover waste heat to produce cooling. 

Solid and liquid desiccant dehumidifiers can utilize waste 
heat to remove latent load, thereby improving the energy 
performance in the air-conditioning processes.

(a) Absorption chiller
Absorption chillers are mature commercial heat-driven 

cooling technology. A schematic diagram of a single-
effect absorption chiller is illustrated in Fig. 14. Qg, Qe, 
Qc, and Qa represent the amount of heat transfer in the 
generator, evaporator, condenser, and absorber, respec-
tively. LiBr/water and ammonia/water are the common 
working pairs of absorption chillers. A generator, a con-
denser, an evaporator, and an absorber are the main com-
ponents of a single-effect absorption chiller. When the 
hot water heats the working fluids in the generator, water 
vapour is then generated and flows into the condenser (7). 

Fig. 12  Schematic diagram of a Kalina cycle
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The generated strong LiBr solution flow into the absorber 
(4–5–6). The condensed LiBr/water in the condenser is 
further sprayed into the evaporator by utilizing a throt-
tle valve (8–9). The vapor then constantly flows into the 
absorber (10). The strong LiBr absorber the vapor and 
then is pumped into the generator (1–2–3). The chilled 
water’s outlet temperature decreases dramatically, since 
the sprayed vapour absorbs a significant amount of heat 
during the evaporation process. Double-effect and tri-
ple-effect absorption chillers are also adopted to recover 
waste heat from the superheated exhaust. Greater details 
on the working principles and cycle process of the sin-
gle/double/triple-effect absorption chillers are well 
documented in the literature [34]. The inlet and outlet 
temperature ranges of a single-effect absorption chiller 
are around 85–100 °C and 75–90, respectively.

(b) Adsorption chiller
Adsorption chiller is a promising technology that feeds 

on waste heat to produce potable and chilled water [30] 
simultaneously. A schematic diagram of a four-bed two-
evaporator adsorption chiller is presented in Fig. 15. The 
main components of the adsorption chillers are con-
denser, evaporator, and chambers with desiccant coated 
heat exchangers. During the adsorption process, beds 3 
and 4 are connected to the low-pressure evaporator and 
high-pressure evaporator, respectively. Consequently, the 
vapour is able to enter the beds from the evaporators. In 

contrast, beds 1 and 2 are connected to the condenser so 
that the vapour can flow into the condenser during the 
desorption process [35]. There is no vapour flowing from 
evaporators to beds or from the beds to the condenser 
during the switching process, because the connect-
ing valves are closed. Unlike absorption chillers that use 
erosive working pairs, the adsorption chillers typically 
employ silica gel/vapor or zeolite/vapor as working pairs. 
Thus, the adsorption chiller does not encounter erosion 
issues. However, the COP of adsorption chillers is com-
paratively lower than the absorption chiller due to the 
silica gel’s vapor sorption capacity being lower than LiBr. 
This limits the wide-scale deployment of the adsorp-
tion chillers. The inlet and outlet temperature ranges of 
an adsorption chiller are around 65–90  °C and 55–80, 
respectively.

(c) Desiccant dehumidifier
Thermal-driven desiccant dehumidifiers remove mois-

ture from humid air, resulting in a significant energy-
saving performance of cooling systems [37]. Figure  16 
shows a schematic diagram of a solid desiccant coated 
heat exchanger dehumidifier system. The solid desiccant 
dehumidifier includes two chambers. Each chamber has 
two heat exchangers coated with silica gel (Type RD). The 
central working principle is the alternation of humidifica-
tion and dehumidification processes between the desic-
cant materials at different temperatures. Consequently, 

Fig. 13  Schematic diagram of a thermo-electricity system
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the moisture in the air is removed. The dehumidified 
air can then be efficiently cooled down with a vapor 
compression system with lower energy consumption. 
Figure 17 shows the schematic diagram of the liquid des-
iccant dehumidifier system. A regenerator and a dehu-
midifier are the main components of a liquid desiccant 
dehumidifier. The working principle is the switching of 
adsorption and desorption processes between liquid des-
iccant material and vapor. LiCl, CaCl2, and LiBr are the 
commonly employed liquid desiccant material.

Comparisons between different waste heat recovery 
technologies and their working conditions are summa-
rized in Table 2.

Recovering waste heat to produce useful heating  (a) Heat 
pump

Both electric heat pumps and sorption heat pumps 
utilize low-grade waste (hot water, geothermal heat, 
solar energy) to produce heating [44]. Figure  18 por-
trays a schematic diagram of a vapor-compression heat 
pump system. It comprises an evaporator, a compressor, 

a condenser, and an expansion valve. During the vapor 
compression cycle, the liquid refrigerant absorbs heat in 
the evaporator (4–1) and releases heat in the condenser 
(2–3). The heat from the condenser is used to heat air or 
water.

Thermal storage systems  Thermal storage systems play 
essential roles in utilizing waste heat [45]. This is because 
the location of many industries that generate waste heat 
are sometimes far away from the consumers’ location. 
Therefore, the recovered waste heat needs to be stored 
and then transported to meet the user’s demand. The 
thermal storage system is likened to a thermal battery and 
can shift heating and cooling peak loads. Thermal stor-
age systems employ a variety of energy storage materials 
to store heat energy. Figure 19 depicts the distribution of 
different energy densities of materials at different tem-
peratures [46]. It is apparent that thermochemical energy 
storage has the highest energy density. In other words, to 
recover the same amount of waste thermal energy, the 

Fig. 14  Schematic diagram of a single-effect absorption chiller



Page 13 of 25Chen et al. Energy, Sustainability and Society           (2022) 12:46 	

volume required for thermochemical energy storage is 
the smallest.

System applications on waste heat recovery
In Table  3, the performances and characteristics of dif-
ferent prime movers and waste heat recovery systems 
are consolidated. Typically, the system integrates a 
prime mover and a waste heat recovery system, which 
can produce multiple utilities. It is noteworthy that 
employing various operating strategies [47] to opti-
mize the thermal energy utilization efficiency [48–50] 
is not within the scope of this study. It is observed that 
some waste heat recovery subsystems are purposefully 
designed to enhance electricity generation performance. 

In comparison, others are adopted to produce multiple 
outputs, such as hot water, chilled water, and potable 
drinking water. Efficient multigeneration systems are 
known to play key roles in future decentralized energy 
landscapes. It is noteworthy that renewable electricity 
typically comes from wind energy, tide energy, and solar 
energy. Renewable electricity can be utilized to generate 
Hydrogen [51]. The typical devices for seawater electroly-
sis to generate hydrogen include (1) Direct seawater elec-
trolyzer (DWE); (2) Proton exchange membrane water 
electrolyzer (PEMWE); (3) Anion exchange membrane 
water electrolyzer (AEMWE). The operating temperature 
for DWE, PEMWE, and AEWME are 20  °C, 58–80  °C, 
and 40–60 °C, respectively. The temperature of produced 

Fig. 15  Schematic diagram of an adsorption chiller [36]
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Fig. 16  Schematic diagram of a solid desiccant coated heat exchanger dehumidifier [37]

Fig. 17  Schematic diagram of a liquid desiccant dehumidifier [38]
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waste heat is low than 100  °C. Thus, part of waste heat 
can be utilized by absorption chiller, adsorption chiller, 
or desiccant dehumidifier. Recent reports have indi-
cated that hydrogen generation from renewable means 
accounts for 5% of the overall global hydrogen produced 
[52]. In addition, the main applications of renewable pro-
duced hydrogen are in the transportation and industry 
which account for 51% reduction in global CO2 emission 
[53].

Cold energy recovery
Current popular LNG cold energy utilization strategies 
include power generation, combined cooling and power, 
air separation, cryogenic CO2 capture, and cold ware-
house provision. A list of cold energy recovery technolo-
gies is provided in Table  4. For power generation units, 
the LNG cold energy is often employed as the heat sink 
for the power generation cycle. In other cases, the LNG 

cold energy is directly converted to cooling effects. These 
applications’ progress and challenges are reviewed and 
analyzed in detail in the ensuing sections.

Power generation
Power generation is one of the most favoured LNG cold 
energy utilization methods, since electricity can be deliv-
ered efficiently  by power line. Based on Japan’s com-
missioned LNG cold energy utilization facilities, about 
76% of them are power generation [66]. The commonly 
adopted power generation technologies are the Rankine 
cycle (RC), direct expansion (DE), and combined cycle 
(RC + DE) [67]. The schematic diagram of a combined 
cycle is illustrated in Fig. 20. LNG is pumped to a pres-
sure that is higher than the distribution network. The 
high-pressure LNG firstly becomes the heat sink for the 
Rankine cycle and then expands in the direct expansion 
turbine. Seawater is often adopted to be the heat source, 
since the receiving terminal is usually adjacent to the port 
area. Liquid with low boiling and freezing points, such as 
propane, is a good working medium of the Rankine cycle 
[68]. It is worthy to note that the power output of the 
direct expansion unit deteriorates for increasing distribu-
tion pressure due to a lower expansion ratio. Hence, the 
direct expansion unit is rarely adopted when the distribu-
tion pressure is more than 2 MPa [67]. Even when a com-
bined cycle configuration is employed, the cold energy 
utilization efficiencies are still low. According to the per-
formance of several commissioned plants, most systems’ 
exergy efficiency spans 10–20% [67].

Some improved configurations have been proposed to 
improve the cold energy utilization efficiency. Sun et al. 
[69] compared the two-stage Rankine cycle-based sys-
tems with the single-stage Rankine cycle-based system 
in harnessing cold energy for power generation. They 

Table 2  Typical working conditions and performance of waste heat recovery technologies

Technology Working temperature (°C) Source types COP (−) Product

RC [39] > 400 High-pressure exhaust gas 0.2–0.3 Electricity

ORC [40] 200–450 High-pressure exhaust gas 0.05–0.2 Electricity

KC [31] 200–400 High-pressure exhaust gas 0.08–0.27 Electricity

TEG [33] 50–730 – 0.05–0.08 Electricity

TABC [41] 200–300 Steam or hot water 1.4–1.7 Cooling

DABC [42] 120–270 Steam or hot water 1.0–1.2 Cooling

SABC [41] 80–120 Steam or hot water 0.6–0.8 Cooling

ADC [36] 60–90 Hot water 0.4–0.6 Cooling

AHP [43] 60–240 Steam or hot water 0.4–1.8 Heating

DH [43] > 60 Condensing heat or hot water  > 0.8 Heating

VCHP [43] 10–30 Condensing heat 3–5 Heating

SDD [37] 50–70 Hot water 0.15–0.3 Dehumidified air

Fig. 18  Schematic diagram of a vapor compression heat pump 
system [44]
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observed that the two-stage Rankine cycle system always 
achieved a higher exergy efficiency due to better thermal 
matching between the heat source and working medi-
ums. In addition, the cascade two-stage Rankine cycle 
system performs better than the parallel system when 
the heat source temperature is above 100  °C. Atienza-
Márquez et  al. [70] proposed a three-stage Rankine 
cycle-based LNG cold energy utilization system. They 
reported that the exergy efficiency of the proposed sys-
tem is capable of reaching as high as 34.7%. Establishing a 
better thermal matching between the cold or heat source 
and working mediums is the key to achieving efficiency 
improvement. However, it should be noted that as the 
stage of the Rankine cycle increases, the system con-
figuration becomes more complicated. This may lead to 
poorer economic viability and system reliability. In addi-
tion, the Brayton cycle [71], Kalina cycle [72], and Stirling 
cycle [73] have also been proposed to generate electricity 
by harnessing the LNG cold energy in recent years.

Combined cooling and power
Besides increasing the number of stages of the Rankine 
cycle, combined cooling and power (CCP) is another 

strategy to improve the LNG cold energy utilization effi-
ciency. The schematic diagram of the CCP system for 
LNG cold energy utilization is illustrated in Fig. 21. After 
power generation, the LNG still contains a considerable 
amount of cold energy. In addition, the evaporator of 
the cryogenic power generation cycle is also a potential 
cold source. It is, therefore, intuitive to continue to har-
ness the remaining cold energy to supply cooling effects. 
Ning et al. [74] proposed a CCP system to utilize the cold 
energy from the LNG regasification process. The sys-
tem continued to recover the LNG cold energy after the 
Rankine cycle and direct expansion unit for air condition-
ing. Li et al. [75] designed an ammonia–water absorption 
refrigeration/power system to utilize LNG cold energy. 
The absorption cycle produced not only electricity but 
also cooling effects. Chilled water was produced from the 
absorption cycle’s evaporator, generator, and absorber. 
The comprehensive energy utilization efficiency for 
such a system was capable of reaching as high as 81.63%. 
Atienza-Márquezet et al. [76] proposed a CCP system to 
recover the LNG cold energy. The LNG cold energy was 
temporarily stored using the CO2 and then distributed to 
a district cooling network. Subsequently, the LNG cold 

Fig. 19  Distributions of energy storage materials and their energy density at different temperatures [46]
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energy becomes the heat sink for the low-temperature 
Rankine cycle to produce electricity. According to their 
calculations, the exergy and energy efficiencies of the sys-
tem approached 40% and 64%, respectively.

Despite many multigeneration systems having reported 
higher efficiency, most studies often do not consider the 
downstream users and their demand scenarios. In other 
words, the performance of these systems is only evalu-
ated from the system perspective. Energy mismatching 

occurs if the LNG regasification rate is not judiciously 
synchronized with the cooling demands. Accordingly, 
the energy mismatch between cold energy recovery sys-
tems and users is the underlying problem that needs to 
be properly addressed.

Air separation
Air separation is one of the energy-intensive industries. 
The atmosphere air is first compressed and cooled to a 

Table 3  Combined systems designed to recover waste heat energy

System(s) A: Experimental analysis;
B: Simulation analysis

Feature(s) Product(s)

ICE + ORC + KC [13] Coupled (A & B) 1. The combined cycle’s efficiency was 
0.21;
2. Two different working fluids were 
considered

Electricity

ICE + PERC + ORC + LNG [54] B 1. Six kinds of PRC working fluids were 
discussed;
2. PERC’s exergoeconomic performance 
was better than the ORC and LNG system

Electricity and hot water

GT + SAB + EC + PT [55] B 1. An optimal CCHP design was proposed;
2. Eight different application cases were 
employed to test the proposed system

Electricity, hot water, chilled water, and 
cool air

ABC + transcritical CO2 cycle [56] B 1. The proposed system aimed to recover 
waste heat at 90–150 °C;
2. Two optimization strategies were 
employed to investigate optimal design

Electricity, chilled water

ICE + QLC + ABC + CRS [57] B 1. The proposed novel trigeneration sys-
tem included QLC system;
2. Parametric analysis of the proposed 
system was also performed

Electricity, hot water, chilled water

A cascade ABC system [58] B 1. The proposed system consisted of an 
NH3–H2O and LiBr–H2O systems;
2. Maximum exergy efficiency was 0.23

Chilled water

A cascade ADC system [59] B 1. Five kinds of working pairs of the system 
were considered;
2. Maximum COP was 0.08

Chilled water

A cascade LDD system [60] B 1. 92.29% energy could be saved by 
employing the proposed system;
2. Payback period of the proposed system 
was 3.39 years

Dehumidified air

A cascade AHP system [61] Coupled (A & B) 1. Utilize waste hot water at 45 °C;
2. Heating COP was 1.77

Hot water

ICE + ABC + ORC [62] B 1. The model was developed based on 
MATLAB/SIMULINK platform;
2. Off-design performance of the proposed 
system was also discussed

Electricity, hot water, chilled water

A cascade absorption–compres-
sion system [63]

B 1. The proposed system was able to pro-
duce chilled water at -60 °C;
2. COP of the proposed system was 0.277

Chilled water

KC + ABC [64] B 1. A multi-objective optimization of the 
proposed system was investigated;
2. Life cycle time of the proposed system 
was assessed

Electricity, chilled water

GT + ABC + ADC [65] Coupled (A & B) 1. The proposed system was able to pro-
duce potable water;
2. Cooling COP of the proposed ABC–ADC 
system was 0.59

Electricity, hot water, chilled water, and 
potable water
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Table 4  Summary of popular LNG cold energy utilization technologies

References System types Configurations Function of LNG

[66] Power generation RC + DE Heat sink and expansion

[69] Two-stage RC + DE Heat sink and expansion

[70] Three-stage RC + DE Heat sink and expansion

[71] Brayton cycle Heat sink

[72] Kalina cycle Heat sink

[73] Stirling cycle Heat sink

[74] Combined cooling and power RCs + DE Heat sink, expansion, and cool down working mediums

[75] Absorption refrigeration/power + DE Heat sink and expansion

[76] RCs + DE Heat sink, expansion, and cool down working mediums

[77] Air separation Two distillation columns Precool inlet air

[78] Single distillation column Precool inlet air

[79] Three distillation columns Precool inlet air

[71, 81, 82] Cryogenic CO2 capture – Cool down CO2

[85–87] Cold warehouse – Cool down working mediums

Fig. 20  Schematic diagram of the combined cycle for LNG cold energy utilization

Fig. 21  Schematic diagram of combined cooling and power system for LNG cold energy utilization
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liquid state. Then, the liquified air is sent to the distilla-
tion column to separate nitrogen, oxygen, etc. During 
the liquefication process, a large amount of electricity is 
used to drive the external refrigeration cycle and generate 
cooling effects. Replacing the external refrigeration sys-
tem with the LNG cold energy refrigerating process is an 
excellent option to reduce electricity consumption. The 
basic principle behind the air separation process employ-
ing the LNG cold energy is shown in Fig. 22. The electric-
ity demand of the electric chiller is significantly reduced 
because of the use of LNG cold energy for air pre-cool-
ing. Chen et  al. [77] investigated the novel coupling of 
two distillation columns with the LNG cold energy for 
air separation. The electricity consumption of producing 
vapour oxygen was reported to be about 72% less than 
the conventional air separation unit (without LNG cold 
utilization). Han et  al. [78] designed a single distillation 
column air separation system. Four different schemes 
were compared while incorporating LNG cold energy. 
Their results revealed that the proposed system cut 66% 
energy consumption compared to the traditional air sep-
aration process (without LNG cold utilization). Wu et al. 
[79] proposed a three distillation columns air separation 
system. In this system, the LNG cold energy cooled down 
circulating nitrogen in a cascade manner. Although the 
power consumption is marginally higher than the sys-
tem designed by Chen and co-workers [77], the power 
consumption is still lowered by 54% with respect to the 
system without LNG cold energy utilization as far as the 
production of liquid oxygen is concerned.

In comparison to pure power generation, the air sepa-
ration process is a more efficient way to utilize LNG cold 

energy. This is because the LNG cold  exergy has been 
directly passed to the working mediums with similar low 
temperature.  However, two key points have to be care-
fully considered before its adoption: (1) the air separation 
plant has to be close to the receiving terminal as the LNG 
is not suited to experience long-distance transportation; 
and (2) the safety aspects of air separation plant may be 
compromised as LNG is a flammable medium. But the 
second issue can be resolved by employing intermediate 
working mediums, such as nitrogen, to transport the cold 
energy. All in, both economic viability and safety impact 
must be seriously considered.

Cryogenic CO2 capture
Excess CO2 emission is recognized as another urgent 
matter that needs addressing as it markedly impacts 
global warming and climate change. Carbon dioxide cap-
ture and storage (CCS) is an important process to reduce 
excess CO2 emission [80]. Typically, CCS involves three 
steps: capture, transportation, and storage. For the first 
step, cryogenic carbon dioxide capture is considered 
to be one of the popular methods for implementation. 
This method employs cold energy that is often gener-
ated by the external refrigeration cycle to condense CO2 
from fuel gas. However, the major barrier that deters the 
development of cryogenic CO2 capture is its high-energy 
consumption. Incorporating LNG cold energy into this 
process will significantly reduce  energy consumption.  A 
schematic diagram of the cryogenic CO2 capture process 
using LNG cold energy  in a combined cycle gas turbine 
(CCGT) plant is shown in Fig. 23. The fuel gas exhausted 
from the plant is cooled down by the LNG cold energy 

Fig. 22  Schematic diagram of the air separation incorporating LNG cold energy utilization
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to separate CO2. The heated natural gas is then sent to 
the gas turbine or distribution network. One key disad-
vantage of the method is that it causes relatively large 
exergy destruction, since the high-quality LNG cold 
energy is directly converted to liquid CO2. Zhao et  al. 
[81] designed a combined power and cooling system to 
capture CO2 from the fuel gas of a magnesium processing 
plant. This system employed a set of evaporators from a 
parallel cryogenic Rankine cycle to cool down the com-
pressed fuel gas. The LNG cold energy played the role of 
a heat sink for the two Rankine cycles. Consequently, this 
system can produce electricity and liquid CO2, operating 
with an exergy efficiency of about 57%. Goomez et al. [71] 
proposed a closed Brayton cycle-based system to capture 
CO2 from fuel gas. Similarly, the LNG cold energy first 
act as a heat sink for the Brayton cycle. It then cooled 
down the fuel gas to capture CO2. Pan et  al. [82] com-
bined a Kalina cycle and an organic Rankine cycle sys-
tem to capture CO2 from the fuel gas generated from 
solid oxide fuel cells and gas turbine (SOFC/GT) plant. 
The fuel gas forms the heat source, while the LNG cold 
energy constitutes the cold source for both cycles. After 
circulating through the two cycles, the LNG cold energy 
condenses the CO2 from the fuel gas.

The electricity consumption for cryogenic CO2 capture 
is reduced by harnessing the LNG cold energy. However, 
for a LNG fueled thermal power plant, the LNG cold 
energy from the power plant itself  is insufficient to fully 
condense the fuel gas. For example, the natural gas mass 
flow is only about 13  kg/s while the fuel gas mass flow 
rate approaches as high as 621  kg/s in the CCGT plant 
[83]. This is attributed to the fact that the fuel gas con-
tains a large portion of non-condensed gas, such as nitro-
gen and oxygen.

Cold warehouse
Cold warehouses are used to preserve food and are con-
sidered to be an important infrastructure in the food sup-
ply chain. The required storage temperature varies as it 
depends on the types of foods. For example, the general 
temperature for frozen storage is − 18 °C [84]. Some sea-
food, such as tuna, require storage temperature as low 
as − 60  °C. Hence, a considerable amount of electricity 
is consumed to maintain the low-temperature opera-
tion. Cold warehouses are usually located in the vicinity 
of the port area to meet import/export requirements. It 
is, therefore, possible to incorporate the LNG cold energy 
to support its operation. A three-stage cooling system 
using R23 as a working fluid to recover LNG cold energy 

Fig. 23  Schematic diagram of CO2 capture in CCGT plant
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was proposed by Li et al. [85]. The schematic diagram of 
the system is illustrated in Fig. 24. The working medium 
directly absorbed the cold energy from the LNG. This 
system was able to provide the cooling effects at differ-
ent temperature levels (− 15  °C, − 30  °C, and − 60  °C). 
Messineo et  al. [86] presented a case study on utilizing 
the LNG cold energy for the agro-food industry. The cold 
energy from the LNG regasification process was recov-
ered and carried by CO2 to meet users’ cooling demand. 
La Rocca et  al. [87] designed a system that utilized the 
LNG cold energy for hypermarkets. The recovered cold 
energy is employed to meet cooling needs from various 
sectors, including air conditioning, display cabinets, and 
the foodstuffs preparation process. Two main challenges 
exist, including the location restriction of users and low 
efficiency. The cold warehouse ought to be constructed 
adjacent to the receiving terminal, since the cold energy 
is not appropriate to experience long-distance transpor-
tation. In addition, the exergy destruction is significant 
when the high-quality LNG cold energy  is directly con-
verted to shallow cooling effects.

Challenges and prospects for waste thermal 
energy recovery
Challenges and prospects for heat energy recovery
Financial and governmental policy
Although the importance of recovering waste heat has 
been emphasized, it is reported that a considerable 
amount of waste heat is still dissipated directly into the 
atmosphere [1]. One potential reason is that the payback 
period of deploying a waste heat recovery system is too 
long. This is because of a financial burden on the industry 
investment. That is because the initial installation invest-
ment to recover waste heat is enormous. Furthermore, 
their energy efficiency is relatively low when compared 

with conventional methods. In addition, it is challeng-
ing to realize wide-scale waste heat recovery applications 
without governmental support policies and stable carbon 
trading markets.

Heat energy storage and transportation
Industries, which produce a large amount of waste heat, 
are sometimes far away from the consumers. Thus, the 
storage and transport of thermal energy have become hot 
research topics in waste heat energy utilization. In addi-
tion, even when the waste heat generation site is close 
to the consumers, a heat thermal energy storage system 
has to be relied on to store the thermal energy. This is 
because the consumer’s demands frequently fluctuate, 
making it challenging to utilize waste heat efficiently. 
Therefore, initial financial investment for thermal heat 
storage and transport leads to more significant deploy-
ment difficulties for waste heat recovery systems.

Improvement of waste heat recovery technologies
Although many waste heat recovery technologies have 
been proposed, experimentally tested, and commercially 
deployed, significant shortages of waste heat recovery 
systems exist. For example, the start-up time of thermal-
driven adsorption and absorption chiller is much longer 
than electric chillers. In addition, the sizes of thermal-
driven equipment are comparatively larger than their 
electric-driven counterparts. As a result, the promotion 
and application of thermal-driven waste heat recovery 
systems are challenging.

Prospects on waste heat recovery
(1) Development of advanced materials may contribute to 
improving the efficiencies of waste heat recovery technol-
ogies. For example, the development of more advanced 

Fig. 24  Schematic diagram of the LNG cold energy utilization in a cold warehouse [85]
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adsorbent materials promotes the efficiencies of adsorp-
tion chillers and solid/liquid desiccant dehumidifiers;

(2) Better thermal storage materials are also key to 
achieving a low-carbon future [1]. That is because better-
performing thermal storage technology not only balances 
well the load matching between supply and demand but 
also stables the energy supply considering the seasonal 
peak and trough of demands;

(3) More advanced waste heat recovery technologies 
are expected to be designed and engineered. For exam-
ple, the s-CO2 cycle has demonstrated better thermal 
efficiency than the conventional cycle [17]; and

(4) A mature and stable carbon trade market coupled 
with supportive policy is expected to promote the devel-
opment of waste heat recovery technology.

Challenges and prospects for LNG cold energy recovery
Low overall recovery rate issue
Fluctuating regasification rate is one of the key issues 
that restrict the improvement of the overall cold energy 
recovery rate. LNG receiving terminals are mainly 
built to meet the natural gas demand of thermal power  
plants and city usages (including residence and indus-
try). The natural gas demand from these sectors usu-
ally appears seasonal or hourly variation. However, the 
cold energy demand from users  may not synchronize 
well with the changing LNG regasification rate. There-
fore, a potential energy mismatch occurs between the 
cold recovery systems and users. Satisfying the natu-
ral gas demand should be prioritized for receiving ter-
minals. Consequently, the capacity of the cold energy 
utilization setups is usually designed at 20–30% of 
their baseload [88] to ensure a reliable cold energy sup-
ply. This becomes a key factor for the low overall cold 
energy recovery rate.

Low exergy efficiency issue
Based on the information from the commissioned 
LNG cold energy recovery plants, the cold energy users 
are varied but independent of each other [89]. If the 
LNG cold energy is only used for shallow cold indus-
tries, such as chilled water production, the exergy 
destruction becomes significant. Even for power gen-
eration  setups, most of  their exergy efficiencies linger 
around 10–20%. Multi-generation systems have been 
proposed by many researchers [90] to improve cold 
energy utilization efficiency. However, most of these 
studies focused on the performance from the system’s 
perspective without considering users’ demands. The 
low-efficiency issue is still not resolved if the energy 
mismatch between the cold recovery systems and users 
is not addressed properly.

Inadequate assessment for proposed systems
The environmental impacts, safety risks, and system life 
cycle are rarely assessed in many cold recovery systems. 
For example, when the storage pressure peaked as high 
as 21 MPa in the LNG cold energy utilization-based liq-
uid air energy storage system [90], it became a challenge 
under contemporary storage technology. Furthermore, 
the LNG operating pressure peaked at 30  MPa when 
transferring heat with the air, there may be a severe 
hazard due to the potential  internal leakage of the heat 
exchangers.

Issues to be addressed
For a newly proposed system, the negative impacts that 
arise due to fluctuating LNG  regasification rates should 
be carefully investigated. Energy storage technologies 
and optimal operating strategies can be adopted to miti-
gate these negative impacts. The users’ demand profile is 
a key aspect when designing a new multigeneration sys-
tem. The energy match between the cold recovery set-
ups and users should be judiciously considered. Besides 
thermodynamic and economic analyses, environmental 
impact, safety assessment, and life cycle assessment are 
imperative to establish the stability and reliability of a 
newly proposed system.

Conclusions
Global warming and climate change are existing prob-
lems that bring immeasurable consequences to the 
planet. World primary energy is still dominated by fos-
sil fuels, which are expected to remain a significant part 
of world energy consumption in the next few decades. 
At the same time, about 63% of primary energy is wasted 
due to insufficient energy utilization. Therefore, there are 
opportunities to develop waste thermal energy recovery 
technologies to promote a sustainable energy future. A 
large amount of waste heat and cold energy from differ-
ent sectors should be recovered to improve the sustain-
ability of energy utilization.

Specifically, this study presents a comprehensive review 
of sustainable thermal energy recovery technologies con-
sidering both waste heat and cold energy utilization. Key 
features of prime movers and waste heat recovery subsys-
tems are reviewed. Recoverable heat is usually in the form 
of superheated gas/steam, hot water, or stored in the 
solid carriers with different temperatures. Accordingly, 
appropriate waste heat recovery systems can be deployed 
to harness thermal heat energy fully. The current appli-
cation status of different multigeneration systems is also 
evaluated and compared. Consumers can adopt and 
select a specific multigeneration system based on spe-
cific energy and product demands. Waste heat recovery 
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technologies continue to show a promising future, since 
they can produce multiple utilities to meet consumers’ 
demands, including electricity, heating, chilled water, and 
potable water.

The cold energy generated from the LNG regasification 
process is a waste cold energy worthy of being harnessed. 
Popular LNG cold energy utilization technologies include 
power generation, combined cooling and power, air sep-
aration, cryogenic CO2 capture, and cold warehouse. 
Future prospects have been highlighted to facilitate the 
continuous development of waste energy cold recovery 
technologies. Optimal operating strategies, improved 
energy matching, and comprehensive evaluation are keys 
to developing energy-efficient LNG cold energy harness-
ing technologies.

It is expected that the prime movers and waste heat uti-
lization technologies reviewed in this paper will play key 
roles in the decentralized energy market in the future.
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