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Abstract 

Background To transition our energy system toward sustainable production and consumption, it is important 
to successfully engage consumers to become active participants in this process. One form this can take is manual 
demand response, where end users respond to fluctuations in energy production and help balance the grid through 
adjustment of their consumption. This paper presents a trial of such a system that took place with tenants in subsi-
dized housing in Catalonia, Spain. The aim of the trial was to motivate the load shifting behavior of the participants 
by forecasting expected consumption curves and tailoring suggestions for optimized behavior. The forecasts and 
suggestions were based on the users’ past consumption patterns and the hourly day-ahead electricity prices. This 
information was made available to the users on a web-based platform, and participants were actively informed with 
text messages sent to their mobile phones in case of attractive saving potentials for the following day. The trial was 
carried out in 2 phases from November 2019 to May 2020 (Phase 1) and from August to October 2020 (Phase 2). Data 
were collected on interaction with the platform, the perceived user experience of the platform and text messages, 
and the perceived energy saving success.

Results Our results showed that there is a general interest of the participants in the concept, but that there are also 
important barriers to integrating load shifting behavior into everyday life. The biggest barriers here are limitations in 
the flexibility potential of households and limited perceived benefits. Feedback from our participants also suggests 
high acceptance and relevance of more automated demand-side management (DSM) concepts.

Conclusions Based on this, we recommend paying special attention to the accommodation of varying flexibility 
potential in manual demand response (DR) programs, ensuring that communicated benefits are sufficiently attractive 
to motivate behavior change, and consideration of a phase of manual DR as an entry point to automated DSM.

Keywords Energy feedback, Demand response, User experience, Energy information interfaces

Background
Maintaining a balance between the production and con-
sumption of electric energy is crucial for a stable grid and 
for maximizing the use of sustainable energy sources. 
This balance is usually achieved by carefully control-
ling energy production, and residential customers are 
typically not involved in the process. However, in recent 
years, various approaches that consider the role of the 
consumer, such as dynamic pricing signals and infor-
mation interfaces, have been proposed, introduced and 
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researched. Nevertheless, there are still many unresolved 
questions regarding the optimal implementation of such 
systems and how they influence user experience over 
longer-term use. There are particularly few studies avail-
able on DSM systems in the context of rented residential 
homes, as such concepts have mostly been tested and tri-
aled with owner-occupants.

In this paper, we report the design considerations and 
empirical findings on the long-term user experience and 
usage patterns of a system that aims to involve residen-
tial end users in grid balancing by encouraging them to 
adjust their energy consumption based on price signals 
and active information. Residential users can access a 
web platform to view the predicted savings potential, 
which is calculated using a statistical model based on 
historical consumption patterns and calendar features. 
Users receive active prompts in the form of text mes-
sages when the potential for savings is particularly high. 
In the following sections, we first review related work on 
influencing energy consumption (sections "Demand side 
management", "Energy feedback", "Persuasive technolo-
gies"). We then describe the system that we developed in 
our research project, along with its usage context and the 
trial method (section "Methods"). Subsequently, we pre-
sent the results of our study (section "Results"), followed 
by a detailed discussion of their implications. Further-
more, we provide suggestions for future research in this 
domain (section "Discussion").

Demand‑side management
The main objective of demand-side management is to 
control energy consumption to prevent overloading 
during peak times and shift demand to periods of high 
renewable energy generation. Flexibility can be achieved 
either through manual control by users or via an auto-
mated system control approach.

Studies have shown that automatic load shifting 
can save energy and has a higher response rate than 
manual demand response [1, 2], but issues related to 
trust, perceived control, and ease of use need to be bet-
ter addressed to improve the acceptance of automated 
solutions [3, 4]. In this context, the concept of a “social-
license-to-automate” has recently been introduced to 
address these issues [5].

Regarding manual load shifting, price-based strate-
gies have a long history in electricity. The three main 
approaches are time of use (TOU), critical peak pricing 
(CPP), and real-time pricing (RTP). TOU uses predeter-
mined price levels and their temporal occurrence, with 
peak prices usually ranging from two to four times higher 
than non-peak prices. Research is ongoing regarding 
optimizing the reduction of peak energy consumption 
[1, 6, 7]. CPP is a time-variable tariff where the electricity 

price deviates from the basic time-variable structure at 
preannounced times. Usually, only a single event price 
level is used, which is commonly announced the day 
before. Peak rates typically are six to eight times higher 
than those during low demand periods. As a result, load 
reductions have consistently been achieved [1, 8–10]. 
RTP is a dynamic tariff that corresponds to the current 
prices at the electricity exchange, the pricing was deter-
mined at the time of consumption or shortly before. 
Pilot studies showed that small differences in price lev-
els resulted in only modest load reductions, highlighting 
the importance of a wide price spread [8, 11]. However, it 
is not rational to arbitrarily increase price spreads since 
higher prices do not equally result in a proportionate 
increase in load shifting by end-users [12].

To maximize their effectiveness and impact on energy 
consumer behavior, variable tariffs should be comple-
mented with a range of supplementary measures such 
as comprehensive and easily understandable feedback, 
actionable recommendations and reminders, and sup-
portive technology [13–15].

Energy feedback
Energy feedback is a commonly used approach to influ-
ence consumers’ energy behavior. The use of information 
interfaces provides users feedback on their consump-
tion patterns, allowing them to reflect on and potentially 
alter their consumption behavior. Interfaces can provide 
feedback on past consumption (indirect feedback), cur-
rent consumption in real time (direct feedback), and pre-
dicted future consumption patterns. Additionally, they 
can offer disaggregated feedback on the consumption of 
specific devices, appliances, and systems.

Indirect feedback has been shown to lead to energy sav-
ings of 5–10% [16–23]. The effectiveness of this approach 
can be influenced by various factors, including the time-
liness [16] and duration [17, 19] of the feedback, expert 
consulting [20], and comparison to oneself or others [16, 
19].

Direct feedback It has been argued that direct energy 
feedback can enhance the effectiveness of energy feed-
back [18], and research has demonstrated that such sys-
tems can lead to significant energy savings [16, 18, 24]. 
According to meta-studies, direct feedback can result in 
a reduction of approximately 6–10% [25, 26]. However, 
in a more realistic context, this reduction drops to 3–5% 
[27].

Predictive feedback Predictions of behavior and con-
sumption, as well as their associated consequences such 
as costs, have been used in energy feedback applications 
to influencing behavior [28–32]. To guide users’ con-
sumption behavior, various designs have been proposed 
to utilize this predictive information [33–35].
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Studies have suggested that providing energy feedback 
in a disaggregated form can enhance its efficiency. How-
ever, a meta-review by Kelly and Knottenbelt [36] found 
that disaggregation may not be required to achieve sig-
nificant savings. They conclude that “disaggregated elec-
tricity feedback may help a motivated subgroup of the 
population to save more energy, but fine-grained disag-
gregation may not be necessary to achieve these energy 
savings” (page 1).

Persuasive technologies
Another approach to influencing consumers’ consump-
tion patterns in conjunction with energy feedback is the 
use of persuasive technologies. To effectively use per-
suasive technologies, system designers should consider 
various design principles and strategies [37, 38]. For 
example, Oinas-Kukkonen and Harjumaa [39] outline 28 
design principles (e.g., tailored information, personalized 
content, cooperation, and competition) that have been 
utilized and evaluated in research on persuasive technol-
ogies (e.g., [40–43]).

Numerous studies have demonstrated that personal-
ized persuasive technologies can be more effective in 
influencing user behavior [44–46]. Personalization can 
be achieved in various ways, such as matching persuasive 
strategies to individual users’ personality traits [44, 47, 
48] or by addressing gender differences [49, 50].

Timing is an important factor in the design of persua-
sive technologies, as it can significantly impact the like-
lihood of behavior change [37, 51]. Recommendations 
aimed at influencing user behavior should be provided 
at an appropriate time, and the number and frequency 
of messages should be managed carefully to avoid caus-
ing irritation or leading to acceptance issues [52]. Con-
sequently, systems that understand the context of users 
and are able to predict the actionability of interventions 
are desired.

Methods
The objective of this research project was to explore the 
potential of optimizing electricity demand in apartment 
buildings connected to the grid and its impact on user 
experience. To meet shifting demand needs, consump-
tion forecasts were calculated, and price signals were 
adjusted accordingly. Additionally, an optimized energy 
feedback system was implemented consisting of several 
elements to encourage behavior change.

Context description and recruitment of participants
The study was conducted in St. Cugat, a Catalan munici-
pality north of Barcelona, and involved a building block 
with 44 eligible apartments. The study focused on an 
apartment building that is part of a social housing 

complex in the area. The availability and access to real-
time consumption data of a whole building with multiple 
tenants was the key factor in selecting that building for 
indirect incentivized demand response services. At the 
time of the project, that social housing building was the 
only one available by the public promoter of Sant Cugat 
del Vallés (Spain). The residents of the building were 
generally low income, and there was a relatively high 
fluctuation of residents. Heat and hot water, which were 
provided through solar thermal panels coupled with a gas 
boiler, were paid for through the social housing program 
and were not affected by the pricing signals and not part 
of the trial. When interpreting the results of this study, 
it is important to consider the specific characteristics of 
our study participants and acknowledge that the insights 
provided in this paper are applicable to this particular 
type of housing and residents.

System description
After reviewing available concepts and approaches and 
considering practical factors, we developed a person-
alized energy feedback system that aimed to increase 
awareness, engage participants, and encourage them to 
shift their consumption toward demand-based patterns. 
Figure  1 provides an overview of the system’s key con-
cepts and components.

The main features of the energy feedback system were: 
(1) consumption analysis and prediction; (2) the calcu-
lation of the savings potential; (3) opportunity-driven 
active messages, and (4) the visualization of energy con-
sumption forecast and saving potential.

For the consumption analysis and prediction, we used 
a hybrid clustering and classification methodology. This 
approach enabled us to estimate the probability of the 
most common daily load curves for each household. We 
then estimated the users’ individual cost savings potential 
based on the predicted probability of the day-ahead load 
curve patterns and the day-ahead energy prices (derived 
from the hourly day-ahead-market prices).

The details of the algorithms used are described in 
detail in Appendix.

Based on these calculations, we sent SMS messages to 
trial participants who met the defined criteria (especially 
the configurable threshold on savings potential). This fil-
tering step was included to improve the meaningfulness 
of the messages and the chances that people act upon 
them. The messages included a direct link to personal-
ized web pages (html) for each individual household. The 
messages were sent in Catalan, and the English transla-
tion (by the authors) is provided in the next paragraph. 
Based on feedback from residents, the message con-
tent was slightly modified in the second phase to better 
address their needs.
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Version 1: “Do you want to save < Savings Potential in 
Percent of tomorrow’s electricity expenses > ? Please use 
your electric devices between < Start time > and < End 
time >. You usually have a peak power around < Peak 
time >. If you need more information, please click on the 
link: < Link >”

Version 2: “Hello!, tomorrow, Tuesday < Date >, you 
have a potential saving of < Savings Potential in Per-
cent > on your electricity bill. Please do not hesitate to 
visit the website, now and whenever you want:” < Link >

To provide participants with easy access to their pre-
dicted consumption pattern and savings potential, we 
implemented a platform within the existing web portal of 
the participating energy provider. The platform allowed 
participants to view a comparison of their predicted 
consumption pattern with their optimized consumption 
curve, as well as the related savings potential, and energy 
prices for the following day. The first version of the plat-
form is depicted in Fig. 2.

Following feedback and suggestions from trial partici-
pants, the main screen was modified in the second ver-
sion by adding the electricity price and the real energy 
consumed. The adapted screen is shown in Fig. 3.

Procedure
The system was tested in an extensive field test between 
November 2019 and October 2020. Following an initial 

survey on general attitude and expectations, tenants were 
invited to two information events about the project and 
were provided with the possibility to change their con-
tracts to profit from saving opportunities. The actual trial 
was then conducted in two phases. After the first phase 
of the trial, the message selection strategy was modi-
fied to address issues identified in the interim feedback 
received from the participants (Fig. 4).

The first phase of the trial took place from November 
2019 through May 2020. It started with an email notify-
ing users that the trial had commenced and that the ser-
vice was free with the goal to costs help lower electricity 
costs. Based on the analysis of the consumption patterns 
of a participant, text messages were sent that indicated 
the savings potential accompanied by a link to the plat-
form where users could gain additional insights. The sav-
ings potential varied between 10 and 50%. Initially, only 
users who had a savings potential higher than a speci-
fied threshold received messages. This threshold was set 
to 20% by default. This rather high threshold was chosen 
due to the low absolute consumption and low energy 
prices (at the time of the study). This default threshold 
could be adjusted individually by the participants them-
selves. After complaints from participants that they did 
not receive any messages, the possibility of changing 
this setting was communicated more actively to the end 
users.

Fig. 1 System overview
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In mid-January, an evaluation survey was sent out to 
gather the participants initial impressions of the project, 
including their load shifting experiences, suggestions for 
improvement, and any issues encountered during their 
participation. The feedback was collected in open-text 
format, and 11 responses were received. Based on the 
feedback and insights gathered from data, such as the fre-
quency of messages sent and platform queries, the mes-
sages and forecasts provided were adapted to resolve any 
technical issues, such as text messages not being received. 
Furthermore, to increase the number of messages sent to 
the users, the savings potential threshold was set to 10%. 
These changes were implemented between May and June 
2020, with the trial resuming in August and conclud-
ing in October of the same year. An evaluation survey 
was conducted in September. Participants were asked to 
provide feedback on the platform itself, the newly intro-
duced features and any barriers encountered while using 
it. They were also asked to share their thoughts on the 
text message-based alert system used for prompting any 
changes in their consumption behavior and any barriers 
experienced while attempting to shift their loads. Addi-
tionally, the survey included questions related to the 
participants’ overall feedback on the project, including 

questions on the willingness to allow automated control 
of loads experiencing the required efforts involved with 
manual load shifting.

Out of the 46 apartment inhabitants (from 38 house-
holds), 34 inhabitants were fully involved in the trial. A 
total of 54.3% were women, and the mean age of partici-
pants was 27 years, ranging from 18 to 35 years old. The 
size of the apartments varied between 42 square meters 
(31 apartments) and 56 square meters (3 apartments). 
The annual household net income was below 23,000 € for 
the single-occupant small apartments and below 26,000€ 
for the bigger apartments suitable for 2 persons. Approxi-
mately three-quarters of the participants had a university 
degree (21.7% bachelor’s degree, 52.2% master’s degree). 
A total of 4.4% had completed high school or the equiv-
alent, and 21.7% had completed professional training. 
Most participants in St. Cugat were employed, either full 
time (65.2%), part time (10.9%), or self-employed (13%). 
A total of 8.7% of the participants were not employed, 
and 2.2% mainly cared for their households. Regarding 
the costs of energy, the average bill of the participating 
households was approximately 25€/month. Therefore, the 
20% saving threshold used for triggering messages would 
generate an absolute saving of approximately 0.15 €/day. 

Fig. 2 User interface of the energy feedback system. Left: predicted energy saving potential; middle: energy saving potential over time; right: 
personalization settings for determining the savings potential threshold for sending notifications
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This rather small absolute amount was also the reason for 
setting the default threshold rather high in terms of per-
centage (20%). During the experiment, tenants were able 
to adjust the threshold according to their preference.

Results
System actions and usage
The subsequent sections present the results and find-
ings of the analysis of the personalized incentivization 
system’s actual usage and related energy consumption 
during the period of November 2019 to September 2020. 
As previously mentioned, text messages were sent to the 
users throughout the trial phase. Figure  5 provides an 
overview of the numbers of alerts sent to the users during 
the trial and offers insights into the power saving poten-
tial specified in the messages.

We can see that text messages were continuously sent 
with the exception of two brief gaps caused by technical 
issues that were promptly resolved. Additionally, there 
was a system maintenance phase during May and June 
2020. The initial grey bars in the graph depict the alerts 
sent during the first two weeks of the trial period, which 
did not include information on savings potential. This 
feature was added only afterwards. Overall, we can see 
that a) in the second phase (after the maintenance and 
the adjustment of the default minimum savings potential 
to trigger a message), the number of sent alerts increased 
and b) the sent SMS were dominated by saving potentials 
below 20%.

A closer look at the relationship between messages sent 
and web platform queries may help to determine whether 
text messages can prompt users to obtain additional 
insights on how to achieve energy savings and reduce 
costs. Figure 6 provides a detailed depiction on the mes-
sages sent and web portal visits recorded for each user 
during the trial period.

In Fig. 6, we can observe that the number of messages 
received by users varied, with approximately 40% (15 
users) receiving messages at a relatively high frequency. 
During the second phase of the trial, we can see that the 
procedure was modified, resulting in the fact that all par-
ticipants receive alerts more frequently. We can also see 
that the number of users who accessed the system on a 
regular basis was rather low and that some initially active 
users decreased their access in the second phase.

Fig. 3 User interface of the energy feedback system (second version 
including energy price and real energy consumed)

Fig. 4 Timeline showing the main events and activities during the trial
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User feedback
Intermediate evaluation
The evaluation survey using open-ended questions con-
ducted during the first part of the trial was completed by 
11 participants. Overall, both the SMS messages and web 

portal queries were experienced as useful, and shifting 
activities were reported regarding the washing of dishes 
and clothes. The only direct criticism regarding the 
platform was that some users found the suggested time 
slots for shifting to be either unavailable or undesirable. 

Fig. 5 Time distribution of alerts sent throughout the evaluation period. Each bar represents a week, and colors indicate the share of the saving 
potential. The gaps between May and June 2020 correspond to the system maintenance period

Fig. 6 Messages (green) and web portal visits (orange) per household ID. Log data for access to the website are only available from February 2020 
onward
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Several participants also reported issues with receiving 
text messages, and there was a general interest in receiv-
ing more alerts with savings opportunities. Additionally, 
several participants expressed doubts about the accuracy 
of the recorded consumption patterns.

The results, therefore, indicated that a low frequency 
of delivered messages is problematic. This can lead to 
lower involvement of users and reduced likelihood of tak-
ing up opportunities when they arise. Furthermore, the 
possibility of flexible consumption in the form of speci-
fied time slots during which shifting is possible would 
further enhance the usefulness of the platform and SMS 
messages. Consequently, issues with receiving messages 
were investigated and resolved, and the default minimum 
savings potential was lowered to increase the number of 
messages received.

Concluding evaluation
The concluding evaluation survey was completed by 26 
participants, 62.2% of whom were female. Participants 
had overall ages ranging from 26 to 39  years (average 
32 years).

Out of the participants who responded to the feed-
back survey, 42.3% stated that they used the provided 
web platform and opt-out messaging. Of those who used 
the platform, usefulness was perceived more positively 
(36.4% rated it at 4 or 5 with 5 = very much) than nega-
tively (0%), but the majority (63.6%) were neutral regard-
ing this question (see Fig. 7).

When asked about the usefulness of specific features, 
participants particularly favored the possibility of com-
paring real and optimal consumption curves (rated 4 
or 5 out of 5 by 90.1%) and the possibility of displaying 
achieved savings (72.2%). The response to the visualiza-
tion of historic day-by-day consumption and day-long 

hourly price information was not as strong but still 
clearly positive (4 or 5 ratings were 54.6% for both ques-
tions). When asked directly if they accessed the platform 
regardless of the text messages received, slightly more 
than half (54.6%) of the participants who were using the 
platform stated that they did so 1–2 times a week. This 
self-assessment of platform usage appears to be signifi-
cantly inflated when compared to the website log data. 
Regarding the overall perception of the platform, par-
ticipants were positive in general. However, they noted 
that the platform could have supported them better with 
more active engagement and/or consistent visibility, such 
as through an in-home display.

The text alert frequency was perceived as “just right” 
by the majority (65.4%), with 19.2% perceiving it as too 
frequent and 3.9% as not frequent enough. Several users 
(11.5%) stated that they did not receive any text message. 
More than two-thirds of the participants (69.6%) found 
the text messages to be useful or very useful (rated 4 or 5 
out of 5). In open feedback, participants mentioned that 
having the rate included in the text messages would have 
been useful.

Regarding shifting efforts undertaken by the partici-
pants, among those who were aware of the optimal con-
sumption curve, only 23.1% stated that they made a true 
effort to shift their consumption. The most frequently 
shifted activity was running the washing machine (52.4% 
shifted this often or very often), while both cooking and 
housework were shifted never or rarely (by 52.4% and 
42.9%, respectively; shifting of housework was stated by 
23.8%) (see Fig.  8 for more details). Charging comput-
ers and mobile devices, as well as using a hair dryer were 
mentioned as additional activities that were shifted. The 
use of programming to achieve shifting was most often 
made with washing machines (42.9%), followed by dryers 

Fig. 7 Summary of user feedback on the overall usefulness of the system as well as the usefulness of specific system aspects. Data were collected 
during the final survey using Likert-scale statements
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(14.3%). Dishwashers were rarely programmed for this 
purpose (4.8%). The majority of the participants (61.9%) 
stated that their shifting activities stayed the same 
throughout the runtime of the project, but some changes 
were reported (28.6% reported an increase, 9.5% reported 
a decrease).

With regard to reasons for not shifting, 8.3% of partici-
pants reported being unsure about what to shift, 20.8% 
found it to be too impractical, 25% stated that they forgot 
about it, and 8.3% did not see enough benefits. The main 
additional reason stated was incompatibility with work-
ing hours, and some participants expressed a preference 
for automated processes in this context.

When asked about their willingness to automate dif-
ferent systems and appliances to align with optimized 
consumption curves, participants were most open to 
automation of heating and cooling systems, followed 
by appliances and water heating (see Fig.  9). Not sur-
prisingly, participants felt most at ease with automation 
that they could control directly. This preference was 
strongest in the context of heating and cooling systems, 
and significantly diminished for other systems and 
appliances. There were minimal differences between 
participants’ preferences for automation with consent 
per process and automation with the ability to monitor 

Fig. 8 Frequencies of shifting activities. Colors indicate the frequencies from “(almost) always” to “no answer”

Fig. 9 Preferences for automated control of different household functions. Colors indicate different levels of control by the household
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and interrupt. In most cases, there was only a slight 
preference for direct consent.

When asked about their interest in accessing informa-
tion on saving opportunities after the project’s conclu-
sion, 53.9% of participants expressed interest. As a final 
feedback, participants noted that they appreciated the 
overall idea and the daily information updates. How-
ever, many faced challenges in finding opportunities due 
to constraints such as busy work schedules and other 
demands that pushed the project to the background.

Discussion
Overall, the assessment of individual feedback suggests 
that our trial participants found the concept of tailored 
and proactive energy savings information to be valu-
able and useful. However, only limited use was made of 
the platform, and only a small subset of users regularly 
engaged with the platform. These results are similar to 
findings summarized by Gyamfi et  al. [53], who report 
that a significant proportion of households do not 
respond to price signals. In contrast to our expectation, 
the tailored provision of energy savings potential did not 
seem to greatly increase the users’ willingness to engage 
in energy shifting behavior in comparison to untailored 
approaches of other studies.

Based on the survey responses and informal communi-
cations with project partners we conclude that the main 
reasons for participants for not engaging were a lack of 
awareness regarding savings potential, a perception of 
limited usefulness, and the absence of ongoing and moti-
vating activities that support the users’ engagement. 
These findings are similar to factors identified in prior 
research [2] and support the notion of using automation 
to manage demand response [54].

This limit in usefulness was mostly due to schedule 
constraints, as the optimized consumption curve tended 
to clash with the times during which participants were 
able to actively shift their consumption. This problem has 
also been identified by Stelmach et  al. [55], and future 
research should specifically address possibilities to miti-
gate this factor. If incentivized shifting is used, personal 
schedules of end-users need to be considered. This can 
be achieved by providing system settings that allow users 
to specify time periods during which shifting is feasible.

End users also need to be engaged on a more continu-
ous base in order to keep the program more present 
and supports the breaking of habits. Also, access to the 
information supporting shifting needs to be made more 
immediate, e.g., through an app. Our system has already 
improved on traditional energy information systems by 
identifying especially useful savings opportunities, but 
further work is needed to better address users’ situational 
needs and circumstances. We think that methods to 

automatically detect users’ current context [56, 57] might 
be a promising addition to improve users’ engagement 
with demand response.

The forecasting methodology for predicting the day-
ahead baseline, based on clustering and classification 
techniques, provides good accuracy compared with 
ANNs, which is the most common methodology for 
domestic individual forecasting. In future work, we want 
to include the consideration of the end-user schedule for 
the next day, as we expect this to boost the prediction 
accuracy.

Direct load control has, depending on the affected 
loads, a much higher likelihood of avoiding issues with 
personal schedules and puts less strain on end users, as 
it does not require active involvement. It does, however, 
require sufficient trust of end-users to grant a “social 
license to automate” [5]. Based on our results, end users 
might therefore be more likely to participate in DLC if 
they have previously attempted to actively shift their 
consumption. A promising approach based on these con-
clusions might therefore be to start with indirect load 
control with the possibility to state schedule constraints 
but offer participants a switch to DLC during workday 
hours (or during the week/overall if preferred by the 
user) with a fixed incentive as part of the bill tied to this 
decision.

Regarding limitations of the study, it is worth noting 
that the revenue potential was relatively small due to the 
fact that in our setup shifting did not affect heating or hot 
water costs. Therefore, under such circumstances, shift-
ing efforts may need to be incentivized more strongly or 
framed differently, for instance by emphasizing success-
ful community-wide CO2 emission savings. It should 
also be borne in mind that the selection of households 
was determined by the availability of data from the public 
real estate development company of Sant Cugat del Vallés 
(Spain). This building was the only one with the data 
requirements that were defined for the use case. Never-
theless, to improve user acceptance and energy flexibility 
in absolute and relative terms, it would be interesting to 
apply the same type of services to users with more elec-
trification in their houses, mainly heat pumps or electric 
radiators for heating or cooling and electric water heat-
ers. One of the problems that has been noted for the 
limited use of our system is the low potential economic 
savings in absolute daily terms (only approximately 
0.2–0.3 €/day on average). In the case of large electric-
ity consumers, being able to vary thermostatic signals 
throughout the day and having a higher baseload con-
sumption would improve the savings potential in both 
relative and absolute terms; therefore, there should be 
greater interest in the implementation of demand-side 
management by messaging to end users.
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Future research, should explore whether and how flex-
ibility potential specifications can be integrated in man-
ual shifting incentivization programs while maintaining 
attractive revenue streams for all participating stakehold-
ers, and also identify the necessary system components, 
such as communal batteries or electric storage heaters, to 
ensure this integration is feasible. Furthermore, it would 
be valuable to investigate whether prior experience with 
manual shifting genuinely enhances willingness to par-
ticipate in automated demand-side management.

Conclusions
In this paper, we presented the results of our work on 
studying the user experience and acceptance of tailored 
messages in the context of influencing energy consump-
tion patterns. We found that participants in general were 
interested in the concept and that more than two-thirds 
found the text messages notifying them of shifting oppor-
tunities to be useful. Despite the positive perception 
of the system the actual usage was limited, highlighting 
the need for future research to explore ways to increase 
participant engagement. Regarding system features, the 
possibility to compare real and optimal consumption 
and the display of achieved savings were most important 
for the users, but the display of prices and historic con-
sumption was also noted as relevant. Our study showed 
that the use of washing machines, dishwashers, and 
dryers was primarily shifted emphasizing the need for 
demand response systems to address the specific require-
ments related to these activities. Several users noted that 
stronger support in automating the shifting of activities 
would be desirable in this regard. Concerning barriers to 
behavior adoption, impracticality, forgetting and limited 
benefits could be identified as important factors hinder-
ing system use and behavioral adoption.

Several promising approaches have been identified 
that could help mitigate these factors, such as offering 
attractive incentives or utilizing automation to provide 
tailored, simple, and convenient control of appliances. 
Future research should explore ways to ensure revenue 
for stakeholders in manual shifting incentivization pro-
grams, identify required system components, and exam-
ine how prior experience with manual shifting can be 
leveraged to increase willingness for automated demand-
side management. To extend the applicability of the find-
ings of this study, future work should also explore to what 
extent the results of our work can be transferred to other, 
broader user groups (such as homeowners). For this it 
should also be investigated which design elements can 
be directly adopted, and which design elements would 
require modifications. In summary, our study results 
led us to believe that tailored messages represent a good 
opportunity to influence energy consumption behavior. 

Yet, to ensure user convenience and sufficient impact, a 
combination with automated control approaches should 
also be pursued.

Appendix
Consumption analysis and prediction
First, we used a hybrid clustering and classification meth-
odology to estimate the probability of occurrence of the 
most common daily load curves for each household (see 
Fig.  10). This energy prediction system was based on a 
novel data-driven methodology that combined clustering 
and classification techniques to estimate the probabil-
ity of occurrence of the most common daily load curves 
from historical consumption data, related weather condi-
tions, and calendar features. The resulting probability was 
then used to estimate the most likely daily load profile, as 
well as a feasible load profile for the user that minimized 
the cost based on hourly variable energy prices. The sta-
tistical methodology for predicting daily load curves for 
users is described in detail in Lazzari et al. [58]; however, 
the method is also briefly explained in the following two 
paragraphs, which are related to the main phases of the 
algorithm: training the models and making day-ahead 
probabilistic predictions of load curve patterns for indi-
vidual households.

Training phase In the first step, the electricity con-
sumption, outdoor temperature and rainfall data were 
collected for the last year and for each household. We 
then trained a Gaussian mixture model using individual 
daily relative energy consumption data to detect the most 
common daily load curve patterns. It is important to note 
that we did not use absolute energy consumption as an 
input variable. The main focus of this type of demand 
response service is to characterize the percentage of daily 

Fig. 10 Consumption analysis and prediction
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consumption that can be shifted over a certain period, 
rather than the specific amount of shiftable energy, which 
depends heavily on the level of household electrification 
and the number of appliances that are turned on at the 
same time. Therefore, these daily load curve patterns 
indicate based on the tenants’ behaviors for each house-
hold at which times the majority of domestic appliances 
and lights were switched on or periods when the home 
was idle and presumably unoccupied. People develop 
everyday behavioral routines based on their work, family 
or leisure context, which are also mediated by the envi-
ronment and conditions (e.g., weather). Therefore, in a 
second part of the training phase, a classification model 
was trained to model the day-ahead probability of each 
load curve pattern using as inputs the daily average tem-
perature and rainfall, along with the probabilities of each 
daily load curve pattern from the day(s) before and sev-
eral calendar features, such as day of the week, month of 
the year and national/regional holidays. As in the case 
of clustering, the last year of data available was used to 
account for usual electricity consumption seasonality.

This training procedure was rerun once a week to 
retrain the models and enable predictions that also con-
sider short-term variations in user behavior. Regarding 
the techniques used along this algorithm, a Gaussian 
mixture model was used to detect the representative daily 
load curves for each consumer based on the consump-
tion patterns of every household during a complete year. 
Then, these labeled data were modeled using an extreme 
gradient boosting classification model to understand the 
relationship between the daily load curve patterns and 
the most recent user behavior, weather conditions and 
calendar features (day of the week, month of the year, and 
holidays).

Prediction phase In a second phase, we obtained the 
most recent energy consumption data from the previous 
day for the users and classified the load curve by identi-
fying the pattern with the smallest Euclidean distance to 
this load curve. Then, the day-ahead classification model 
predicted the occurrence probability of each daily load 
curve pattern for every household based on the most 
recent electricity usage, the forecasted weather condi-
tions and day-ahead calendar features. This prediction 
was updated on a daily basis.

Calculation of savings potential A second important 
property of our developed system was that it estimated 
the users’ individual cost savings potential. This esti-
mation was based on the predicted probability of the 
day-ahead load curve patterns as well as the day-ahead 
energy prices (as derived from the hourly day-ahead 
market prices). First, the cost of each load curve pat-
tern was calculated to obtain the load curve with the 
highest success probability, which was assumed to be 

the day-ahead baseline. In addition, if any other load 
curve pattern had a probability greater than 10% of suc-
cess, the target load curve was defined as the one with 
lower associated costs for the household. When any 
other load curve pattern has a minimum of 10% to suc-
cess, no target is defined. It is assumed that any other 
load curve pattern is feasible for the user instead of the 
baseline one. Therefore, no savings potential is esti-
mated for that day, when no target load curve is avail-
able. In contrast, in the case of being able to estimate 
savings, they were calculated based on the target cost 
and the baseline cost.
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