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Abstract

Background: Environmental systems often have a very complex structure. Methods from computational
intelligence (CI) that are often inspired by nature can help to improve these systems. On the one hand, CI methods
can be used for optimization; on the other hand, they can be used to extract information out of time series
recorded from environmental systems.

Methods: Methods from different fields of computational intelligence are investigated. Among them are supervised
and unsupervised machine learning methods used for classification and cluster analysis, respectively. Furthermore,
methods from evolutionary computation and multi-agent systems are used to develop control and optimization
solutions for environmental processes.

Results: In this paper, five applications in the fields of anaerobic digestion, pellet-heating, and wastewater management
are studied. Using CI methods, e.g., biogas plant operation or a pellet-heating process can be optimized. Furthermore,
important process variables can be obtained from huge measurement datasets that otherwise would be unanalyzed
and therefore data cemeteries.

Conclusions: The results reveal that using CI methods environmental processes can be improved in a favorable
cost-benefit fashion.

Keywords: Biogas; Environmental engineering; Evolutionary computation; Image analysis; Machine learning;
Multi-agent systems
Background
The future success of renewable energy as an alternative
energy source to fossil fuels is an essential part of the
German future vision of the ‘Energiewende’ (energy transi-
tion). It will be fostered by two independent aspects: (1)
political regulations and (2) advantage over classical en-
ergy sources in price competition. Because aspect (1) is
situated more in the area of social sciences and is, in many
ways, a more stochastic process, the following ideas will
focus on aspect (2).
At the intersection of classical automation and more

sophisticated computational intelligence (CI) methods,
there is a huge potential to develop intelligent automa-
tion systems. Applied to renewable energy processes and
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plants, those will be strengthened in terms of efficiency,
stability, and financial viability, increasing their potential
of long-term success. The goal is to improve system per-
formance to an extent such that the initial investment in
expertise and infrastructure is paid out in the long run.
As renewable energies depend on natural forces, which
are complex and difficult to control, finding optimal so-
lutions is challenging. CI methods, which are often in-
spired by natural processes and phenomena, offer an
interesting opportunity to find optimal solutions for spe-
cific applications. As CI is a wide field, the focus of this
paper will be on the following:

(1)Supervised machine learning
(2)Unsupervised machine learning
(3)Evolutionary computation
(4)Multi-agent systems
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They are preceded by an application of a standard data
analysis task which is not based on CI methods. All
methods are applied to one of the following environ-
mental, renewable applications:

(1)Anaerobic digestion in biogas plants
(2)Pellet-heating process
(3)Wastewater management and treatment

An overview of artificial intelligence techniques ap-
plied to environmental systems in general can be found
in [1], to photovoltaic systems in [2], and to smart elec-
tric grids in [3].
The possibilities for continuous process improvements

by intelligent automation and data-analysis methods will
be shown by five typical examples that are under devel-
opment or test in our research group GECO►Ca:
(1) By elaborated benchmarking-technologies, the effi-

ciency of biogas plants can be improved. (2) Intelligent
data analysis enables the application of innovative meas-
urement technologies to allow for comprehensive moni-
toring and stability improvement of biogas plants. (3) The
dynamic simulation of the fermentation process opens the
way to further optimization of the biogas process. (4) The
application of enhanced algorithms allows the use of
image-processing technologies to control and optimize in-
cineration processes, and software agents (5) enable the
control of highly distributed systems, i.e., flexible energy
production and distribution within smart grids.
The background of those five applications and the

used methods are introduced in the ‘Methods’ section
and results shown and discussed in the last section.

Methods
Using standard statistics, such as mean, standard devi-
ation as well as correlation and linear regression ana-
lysis, efficiency of processes in terms of input-output
relations, and linear dependencies in the data, can be de-
tected and evaluated. In the following application, those
methods are used to evaluate as new substrate pretreat-
ment process at a full-scale agricultural biogas plant. To
properly asses biogas plant performance and optimization
potential, detailed regular data analysis is a key factor.
Benchmarking allows the comparison of innovative
feed-treatment technologies. The effects of substrate
pretreatment on biogas yield and substrate degrad-
ation by mixing and cutting at an agricultural biogas
plant (ABP) were closely investigated. The purpose of
the test is to identify the benefits of the changed
physical structure of the substrates on ABP oper-
ation. The theory is that the physical structure of the
substrate feed after treatment improves overall feed
efficiency (net yield of useful outputs per unit input)
of biogas plants. For a review, see [4].
At a full-scale industrial biogas plant, supervised ma-
chine learning methods are applied to measure organic
acid concentration in the digesters. Being common
knowledge that organic acids, volatile fatty acids (VFA)
in particular, are crucial to assess process stability, their
online measurement allows for the development and im-
plementation of new advanced control strategies for an-
aerobic digestion processes. Modern spectroscopic online
measurements allow for online detection of organic acids
using ultraviolet/visible (UV/vis) and middle infrared
(MIR) spectrometric probes. The close monitoring of
anaerobic digestion processes and the development of
control strategies for optimal organic acid concentra-
tions will substantially increase process efficiency and
stability. As methods, different classification and re-
gression algorithms are used such as discriminant ana-
lysis [5], support vector machines, and artificial neural
networks. Using a spectrometric probe measuring in the
middle infrared spectral range, it is possible to measure
total organic carbon and ammonium as well. An applica-
tion to an industrial biogas plant within the metabolon
projectb is presented in the results section. Supervised ma-
chine learning algorithms are often applied to environ-
mental systems, e.g. [6-8]. A review of their application to
environmental process data is given in [9].
The unsupervised machine learning method k-means

clustering [10] was used to analyze the flame of a pellet-
heating process. The increasing demand in future CO2-
neutral heat generation by modern biomass pellet heaters
leads to increasing demands for these pellet heaters and to
a higher demand for suitable fuels. Traditional fuels such
as wood chips are replaced by different mixed fuels made
of recyclables. This leads to new challenges for existing
classic control and monitoring systems because every new
fuel has different burn characteristics (depending on dens-
ity, humidity, composition, dosage). The applied control
strategy in today's biomass heater industry uses exclusively
static control parameters with the use of sensor based
measurement systems. The corresponding control param-
eters are set by experienced service staff at the commis-
sioning of the plant for the use of a specific fuel type. In
most instances, the optimal setting of the control parame-
ters is done by a visual assessment of the combustion
process. In the case that the plant operator changes the
type of fuel, these control parameters need to be adapted
to the new fuel resulting in high service costs for the oper-
ator and long adaptation times until an optimal control is
reached. Since these parameters can only be manually
tuned in, a quick adjustment is not possible. One of the
most important control objectives of a combustion
process of pellet heaters is optimal air and pellet supply to
ensure energy-efficient, clean, and pollution-minimized
combustion. The most common control parameter is
temperature, measured in the pumice stone coating of
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the boiler. Due to its location, the temperature measure-
ment suffers from long dead times, which is a disadvantage
for time-sensitive control strategies. Sometimes, a pollution
sensor at the off-gas complements the temperature sensor
but like the temperature sensor, it is an indirect measure-
ment of the combustion quality which requires further
analysis. The application of digital image processing offers
the advantage of direct and immediate measurement of
combustion process quality. Time-sensitive control strat-
egies can then be used to optimize the process. Various
statements about the quality of a combustion process can
be done just by observing color and surface of the flame. A
large flame surface usually indicates a low excess air rate
and a flame color which is mostly red or a flame with dark
spots usually indicate a high concentration of carbon mon-
oxide as well as increased soot. An optimal burn with
low pollutant and high efficiency is recognized by
semi-transparent large yellow flames whereas small
flame surfaces indicate low efficiency and high emis-
sions. The combination of modern image processing
and cluster algorithms offers the ability to distinguish
between the different properties of the flame.
To optimize and control the substrate feed of a biogas

plant, evolutionary computation methods are applied to
find the optimal feed with respect to a complex objective
function. Detailed simulation models of the anaerobic
digestion process, such as the IWA Anaerobic Digestion
Model No. 1 (ADM1) [11], are valuable platforms for
developing and testing new optimization and control
strategies. The ADM1 is a structured model incorporat-
ing disintegration and hydrolysis, acidogenesis, aceto-
genesis, and methanogenesis steps. Therefore, it offers
the complexity needed to model full-scale biogas plants
realistically. The availability of a validated simulation model
allows powerful computational intelligence methods such
as particle swarm optimization (PSO) [12] and genetic algo-
rithms (GA) [13] to be used to estimate optimal operating
parameters for the biogas plant. Nevertheless, application
of these powerful population based optimization proce-
dures is only feasible with a simulation model because test-
ing of many different operating parameters at full-scale
biogas plants is difficult and often not practical. For ex-
ample, variations in substrate feed can affect process stabil-
ity and cause extreme situations that are difficult to recover
from.
To control the level of storm water retention tanks, an

approach is used which belongs to the field of multi-agent
systems. Such software agent concepts are developed in
the research area of distributed artificial intelligence. The
origins date back to the 1950s of the last century. A devel-
opment leap of the agent technology happened in the age
of massive computer networks and increasing complexity
of distributed applications. Software agents are nowadays
used in many applications in business, industry, and
environment, e.g. [14-18]. They often assist the user in
the background, without him realizing it. Often, an
agent is viewed as an autonomous unit which can per-
form assigned tasks in a defined environment while
the agent perceives its environment through sensors.
On the basis of its perception, it decides which mea-
sures he can perform in order to achieve his goals.
Through his actuators, it influences the environment.

Results and discussion
This section is divided into five subsections, each one
discussing the results of one application introduced in
the previous section.

Benchmarking of feed optimization in biogas plants
To test the effects of an optimized substrate feed mix, a
commercial pretreatment unit is used to feed an ABP
near Gummersbach for a period of 19 weeks from 1
May 2012 till 3 September 2012.
To evaluate the efficiency of the pretreatment, the trial

was split into three different phases following an initial
phase of nearly constant substrate feeding to allow for a
good assessment of the start state of the ABG. Thus, the
different phases of the trial are as follows:

� Before trial: 1 May 2012 to 16 July 2012

○ Ø Substrate feed: 19 t maize, 27 m3 manure, and
1.5 t dung

� First stage: 17 July 2012 to 30 July 2012 (only maize
pretreated)
○ Ø Substrate feed: 19.5 t maize, 23 m3 manure, and
2 t dung

� Second stage: 31 July 2012 to 13 August 2012
(maize and manure mixed and pretreated)
○ Ø Substrate feed: 19.5 t maize, 23 m3 manure, and
2 t dung

� Third stage: 14 August 2012 to 3 September 2012
(maize, manure, dung, and straw mixed and
pretreated)
○ Ø Substrate feed: 19.7 t maize, 26 m3 manure,
1.7 t dung, 1 bale of straw

The overall goal is to compare ABP operation before,
during the trial, and in each of three trial stages, respect-
ively. Therefore, the phase before the trial, the whole
trial period, and the three stages are analyzed separately
and then compared, which allows a performance evalu-
ation of each trial stage as well as of the trial as a whole.
The following statistical and anaerobic-typical parame-
ters are calculated and performed:

� Mean and standard deviation of all recorded
parameters during the different phases

� Biogas and power production
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� Specific biogas production (m3/t of substrate)
� Specific biogas production (m3/m3 digester volume)
� Specific power production (kW/t of substrate)
� Specific power production (kW/m3 digester volume)
� Hydraulic retention time (d)

Based on these parameters, the improvement during
each phase of the trial compared to the state of the ABG
before the trial is calculated in percent [%]. For better
visualization of analysis results, bar plots as well as tra-
jectories over time are used.
Figure 1 shows that a significant reduction in standard

deviation of the biogas production was achieved through-
out the whole trial. This shows that the AD process is
more stable and efficient.
The specific power production per ton of substrate

[kW/t] shows similar results as the specific biogas pro-
duction which is expected as these parameters are
closely related; see Figure 2. In general, an increase in
specific power production is evident although stage 3 of
the trial performs again worse than the other stages of
Figure 1 Biogas production. Comparison of Biogas production [m3/day]
of the trial.
the trial. Nevertheless, overall increase in specific power
production is significant with up to 9% in stage 1 and
6.8% in average over the whole trial period when com-
pared to the specific power production before the trial.
Overall, the results of the data analysis clearly show

that the use of a pretreatment process for the substrate
feed of biogas plants is beneficial to process efficiency.
During the trial stages, an improvement with a view to
specific biogas and power production between 4% in the
worst case and 14% in the best case was achieved. In
average, an improvement of 7% for the specific biogas
production (m3/m3 digester volume) and of 12% for the
specific power production (kW/m3 digester volume) was
proven by the data analysis. Furthermore, an analysis of
the standard deviation of biogas and power production
throughout the whole trial in comparison to the stand-
ard deviation before the trial shows a decrease in stand-
ard deviation of 48.5% for biogas production and of 8.7%
for power production. This clearly indicates a significant
improvement in process stability during plant operation
caused by a homogenized substrate feed. Besides all
before the trial (a) and during first (b), second (c), and third (d) phase



Figure 2 Specific power production. (a) Comparison of specific power production per t of substrate [kW/t] compared to the state before trial
and the three stages of trial. (b) Comparison of increase in specific power production in percent [%] also compared to the state before trial and
the three stages of trial.
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these positive results, a clear improvement through the
use of straw in the pretreatment process could not be
proven during trial. Figure 2 shows that although an im-
provement is achieved by using straw in stage 3, it is sig-
nificantly lower than for stages 1 and 2.

Intelligent data analysis as part of innovative
measurements for optimization in biogas plants
Online monitoring of process variables that are crucial
to stable and effective biogas production at agricultural
and industrial biogas plants such as volatile fatty acids
(VFAs), carbon buffer (TA), and ammonium concentration
(NH4+) is the basis for each kind of process optimization
and control. Unfortunately, these variables are difficult to
measure online due to high total solids concentrations (up
to 15%) and sensor drifts caused by clogging and fouling of
the probes. The solutions to this problem are spectroscopic
measurement systems, which measure absorption or re-
flection spectra which are subsequently analyzed and
translated into process variable concentrations. Due to
the fact that the relationship between spectral data and
actual variable concentration is far from linear and
sometimes difficult to determine, intelligent data ana-
lysis is key to obtain valuable process information. The
use of machine learning algorithms has proven to be
very useful for this application. In the following two
sections, the results from an ultraviolet/visible (UV/vis)
and middle infrared (MIR) spectroscopic probe show that
VFA and other important process variables can be mea-
sured online successfully.

UV/vis spectroscopic probe
The measurement data set was created from online mea-
surements using the UV/vis measurement system in-
stalled at an industrial biogas plant (IBP) and laboratory
measurements, which are regularly taken at the IBP to
monitor organic acid concentration in the two digesters.
Thus, no synthetic data set was used for training and
validation of the machine learning methods. Overall, a
total of 4,435 samples were obtained from the biogas
plant and these were used to generate training and valid-
ation data sets with 3,326 and 1,109 samples, respect-
ively. Those samples were subsequently split into five
classes containing samples from low VFA concentrations
(class 1) up to high VFA concentrations (class 5). To
analyze the data in these classes, different data trans-
formation, reduction, and classification methods were
used and compared.
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The results prove that this online-measurement is far
from trivial, such that advanced pattern recognition
methods are needed to achieve good results. This is
mainly due to the UV/vis fingerprint which does not
show clear absorption peaks. Instead, the absorption pat-
terns of variables are overlapping. Nevertheless, a com-
parison of the different data transformation, reduction,
and classification methods shows that unbalanced data
sets for training are a major problem, when it comes to
achieving low NMCR (normalized mean misclassifica-
tion rate) and MCR (mean misclassification rate) results
with some classifiers (Table 1). However, application of
appropriate class weightings during the training process
can effectively counter the effect of the very small set of
samples which was available for class 5.
Of the methods considered, the combination of RF

and GerDA yields the best error rate for the unweighted
data set (12.1%). With regard to the weighted data set,
SVM achieves the best overall results with an NMCR of
12% without requiring any feature selection or extraction
methods. The comparison of the weighted SVM and
weighted relevance vector machine (RVM) on the GerDA
features reveals that both methods perform equally well
on the test data set, but that RVMs are more robust and
provide more efficient predictive performance due to the
significantly lower number of support vectors.
MIR spectroscopic probes
Using the attenuated total reflectance (ATR) technology
and the Fourier-transformed infrared (FTIR) spectroscopy
Table 1 Overall results with NMCR and MCR [19]

Feature extractor Classifier NMCR [%] MCR [%]

LDA Linear 34.0 35.7

GerDA Linear 12.8 13.1

RF RF 16.7 17.0

GerDA RF 12.1 12.4

None SVM 19.1 10.8

RF SVM 19.1 10.8

RF RVM 25.9 15.4

GerDA RVM 19.8 10.8

FSR MLP 30.5 16.3

GerDA MLP 30.7 12.4

None W-SVM 12.0 12.0

RF W-SVM 12.5 14.3

GerDA W-SVM 12.8 11.8

GerDA W-RVM 13.0 11.0

GerDA W-MLP 17.2 13.3

FSR W-MLP 30.6 22.1
in the middle infrared (MIR) spectral range (1,800 to
800 cm−1), the process variables VFA, carbon buffer (TA),
and NH4+ can be measured online, simultaneously. The
MIR probe and its fully automated process interface for
cleaning and calibration (Figure 3) were developed within
the research project INNO-MIR BIOGASc (development
and automation of an innovative MIR online measure-
ment system for biogas plants).
The MIR sensor technology has two major advantages

compared to near infrared (NIR) or UV/vis spectro-
scopic sensors. (1) The important process variables show
distinctive peaks in the MIR spectrum which facilitates
spectral data analysis. (2) Diamond-tipped ATR probes
are extremely robust and low maintenance.
The following figure (Figure 4) shows the relevant

wavenumbers for carbon buffer (1,630 and 1,360 cm−1)
and ammonium (1,460 cm−1) (a) and VFA (1,548 and
1,412 cm−1) (b).
Using intelligent data analysis methods such as partial

least square (PLS) regression and support vector regression
(SVR), good calibration models were calculated. The
Figure 3 MIR probe installation at an industrial biogas plant. In
(a), you can see the probe and probe fitting with cleaning chamber.
In (b), the MIR spectrometer and the computer for sensor control
are shown.



Figure 4 Absorption peaks and relevant wavenumbers for AD process variables. In (a), the wavelengths of ammonium, carbon buffer, and
total solids after addition of ammonium chloride and sodium bicarbonate are shown. In (b), VFA-wavelengths after addition of sodium acetate
can be seen.
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standard errors of cross-validation that were achieved in a
controlled laboratory environment are 0.372 g/L (VFA: R2

= 0.971), 0.336 g/L (TAC: R2 = 0.996), and 0.171 g/L (NH4-
N, R2 = 0.992) in the case of PLS and 0.386, 0.259, and
0.110 g/L for the SVR-algorithm, respectively.
First, in-line measurements in an industrial biogas

plant, which uses biowaste as feedstock, show that the
expected absorption bands can be found during normal
operating conditions. However, they are subject to a
temperature effect, which must be taken into account in
the quantification. Further studies are needed to put the
in-line capability of the measurement system to the test.

Low-cost image analysis for optimization of pellet
heating process
To analyze the flame of a pellet-heating process, the re-
corded combustion process (see Figure 5) is first con-
verted into a binary image. During this process, the
flame portion of the image is set to white (binary value
1) and the background is set to black (binary 0). The
creation of binary images is carried out by utilizing the
method of Otsu [20], which automatically calculates the
threshold which is used to decide which pixels will be
set to 1 or 0. By calculating the ratio between the num-
ber of white pixels and the total number of pixels of the
binary image, the size of the flame is determined. The
binary picture is then used for separating the flame from
the background of the image by superimposing the binary
image with the original image. The resulting (masked)
image will then be used for the cluster analysis in the next
main step. Before cluster analysis is performed, the image
is converted in the device independent L* a* b* color space.
The basis for this color space is the color opponent theory,
where the color and brightness information are in separate
channels. The parameter L* represents the luminance-
information in a range of 0 to 100 whereas parameters
a* and b* contain the color information with a range
from −100 to 100. In accordance with the color oppon-
ent theory, the green to red color part is represented
by a* and the blue to yellow part by b*. The advantage
of this conversion is based on the fact that the color in-
formation can be analyzed separately from the brightness
information. After the conversion, the k-means cluster
analysis separates the colors into different clusters. Each
cluster is equivalent to one of the three main flame colors
(red, yellow, white) that can occur during combustion and
represents the different visual properties of the flame.
Analyzing those properties and creating different rule sets
to identify the combustion state offers the ability to imple-
ment low-cost real-time controllers. Nevertheless, the ac-
curacy is strongly affected by fouling caused by soot
production. In this case, a controlled air flow into the
combustion chamber together with a specially impreg-
nated glass window can be used to minimize soot
production.

Simulation of biogas plants for feed optimization and control
The optimization of the substrate feed with regard to its
flow rate (throughput) and composition is a highly non-
linear and complex optimization problem. CI methods
such as genetic algorithms and particle swarm optimization
can be used to solve this task. GAs and PSO are both
methods that optimize the optimization criterion using ex-
ploration and exploitation schemes. This allows a large
search space to be explored and can lead to novel solutions
that would normally not be considered.



Figure 5 Clustering of the image of a flame with respect to temperature. Above is the figure of an original flame image. The figures below
show the low-, medium-, and high-temperature surfaces of the original image that were identified using cluster analysis of the color information
in the image.
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For substrate feed optimization, the objective function
is defined to be a weighted sum of the net income (in-
come from selling electrical and thermal energy minus
the operating energy and substrate costs) and a number
of operating stability constraints. The constraints consid-
ered include a limit on the pH value inside the digesters,
a maximum VFA/TA value, and a minimum methane
fraction of 50% inside the produced biogas. All con-
straints are normalized between 0 and 1, with 0 indicat-
ing that the according constraint is not violated. The
available amount of substrates is a further constraint
which is implemented as a hard constraint for the input
variables.
In Figure 6, a result of a substrate feed optimization sce-

nario with respect to the objective function is visualized. In
this scenario, the substrate feed of a full-scale agricultural
biogas plant of 750 kW was optimized using PSO. The
standard substrate feed of this plant is a mixture of maize
silage and manure. Optimization showed that using grass
silage as additional substrate, the same amount of methane
can be produced but with less substrate costs.
The results showed that it is possible to find the opti-

mal substrate feed for long-term operation of biogas
plants and therefore to optimize biogas plant operation.
This method does offline substrate feed optimization
because the substrate feed is not corrected automatic-
ally in case a mismatch between predicted and real plant
behavior occurs. Thus, a consequent continuation of
this method is to implement an online substrate feed
optimization as is presented in the following section.
To achieve online substrate feed optimization, model

predictive control (MPC) techniques [21] for a closed-
loop control of the substrate feed are used, which utilize
the model of the process to predict the optimal se-
quence of substrate feeds. As the anaerobic digestion
process is nonlinear, nonlinear MPC (NMPC) is used to
exploit the full knowledge available of the process to
forecast optimal substrate feeds. In Figure 7, a standard
NMPC control loop is sketched, which visualizes the de-
veloped optimal substrate feed control. In comparison
to MPC, the analytical optimization method used in
MPC is replaced by a CI method, such as PSO or GA,
due to the nonlinearity of the developed model of the
biogas plant. The state estimator in Figure 7 is needed

to estimate the current state of the biogas plant X̂k out
of the current substrate feed uopt,k and the measure-
ments yk available. In this case, this is done using a su-
pervised learning algorithm which learns a pattern
between measurements and the corresponding state of
the biogas plant [22].

Figure 8 shows the evolution of the objective value for
an algorithm test of the NMPC over a simulated period of
100 days. Here, the controlled biogas plant is the same
model as is used by the NMPC for prediction. The indi-
vidual points (squares) plotted in Figure 8 represent the



Figure 6 Substrate feed optimization results for a full-scale agricultural biogas plant. Comparison between standard substrate feed and an
attempt with three optimized substrates as well as an attempt with five optimized substrates.
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simulations performed in the constrained optimization
problem over the prediction horizon. The simulations are
started at a substrate feed composed out of 30 m3/day
maize silage and 15 m3/day manure. It can be seen that
the plant's operating state was poor in the beginning
(warm colors) but improved as the controller drove the
plant towards an optimal solution (cold colors). In prac-
tical terms, the improvement from ‘bad’ to ‘excellent’
achieved by the NMPC represents an additional gain of
about 550 €/day for the biogas plant operator [23].
Figure 7 NMPC feedback control system for optimal substrate feed c
containing the NMPC, the state estimator, and the controlled biogas plant.
Cooperating software agent system for the control of
distributed nonlinear systems
To control a sewer system, every storm water tank (SWT)
as well as the wastewater treatment plant (WWTP) is rep-
resented by a single software agent. The system follows an
economic approach where storm water tanks act as com-
petitors on a virtual water market. The advantage of this
approach, compared to conventional control strategies, is
the minor configuration effort and the comfortable ex-
pandability of this system by achieving the same and
ontrol of biogas plants. The figure visualizes the control loop



Figure 8 Overall performance of the evaluated substrate mixes during optimal control. Figure 8 shows the evolution of the objective
value for an algorithm test of the NMPC over a simulated period of 100 days. The individual points (squares) plotted in Figure 8 represent the
simulations performed in the constrained optimization problem over the prediction horizon.
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better results than conventional control strategies. It
achieves this by self-organization and cooperation of the
agents in the system. Control strategies like minimizing
water pollution of affiliated rivers or optimizing the waste-
water treatment plant inflow can easily be adjusted just by
adjusting one or two parameters of the software agents.
The controller development for sewer systems based

on classical control concepts is usually complicated and
inflexible. A control system is often tailored to a specific
sewerage network and is rarely - if ever - immediately
transferrable to other sewerage networks. Often, the de-
velopment of a new control system is necessary. In the
following, an alternative approach to conventional con-
trol strategies is proposed.

The free market approach
Comparing functions of the main components in a sew-
age system with those of the market, we see a variety of
analogies. In both systems, there is a product, a supplier
of the storage, a buyer of the product, and a common
transport system. These similarities lead to the assump-
tion that comparable system rules also exist. This re-
sulted in the approach to depict the behavior of a
market with a multi-agent system. The individual partic-
ipants in the market are represented by software agents
with different functions.
First, there are active components such as buyers,

sellers, and intermediaries who are actively involved in
the trade. Secondly, there are passive components such
as the merchandise, product storage, and transport sys-
tem, which are influenced by the active components.
The product or commodity that is traded on the water
market of the agent is wastewater. It has a price and
can, depending on the regulatory approach, possess a
quality that affects the selling price. The transport
system for traded goods is the sewer system. This
transport system has certain constraints, which are
caused by the physical conditions of sewer systems.
The buyer represents the wastewater treatment plant.
He is the only real buyer in the water market. The
buyer determines the optimal inflow rate to the treat-
ment plant and tries to buy it. Its aim is to optimize
the treatment process with the regard to effluent qual-
ity and energy consumption.
The seller represents the storm water tank with the re-

spective catchment areas. To any storm water tank, a spe-
cific catchment area is assigned which produces wastewater.
The seller has no influence on the amount of wastewater
produced which is why its aim is to sell the maximum
amount of wastewater possible without losing the water by
exceeding the storage capacity. The reservoirs of the SWT
correspond here to the stored amount of water. The starting
price for the sale bid price is calculated in a price function
which includes the stored amount of water, the current dis-
charge volume, the priority of the seller agent, and if
intended, the quality of the wastewater. The seller is re-
stricted to offer only a part of its water in a round of selling.
This ensures that it cannot sell its entire water volume in
the first round. The seller, however, has the goal to sell as
much as possible. If he is undercut by other sellers, he re-
duces his selling price.
The negotiator is the instance between buyer and seller.

In physical terms, we can assign a sewerage strand with its
SWT to the middleman. The middleman takes the pur-
chasing bid of the buyer and tries to get the required
amount from the sellers as cheap as possible. To do this,
he collects all offers in each round and determines the
best deal. The seller with the lowest price may sell its
quantity. The trade rounds are completed as soon as the
required amount has been purchased or no more goods



Figure 9 Interaction between the different agents and the physical process. The seller (storm water tank) could offer water over a price.
The negotiator is the instance between the buyer and seller. He collects all sell offers in each round and determines the best deal. The seller with
the lowest price may sell its quantity.
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are offered. Figure 9 shows the principle interaction be-
tween the different agents and the physical process.
This method has been tested in sewerage systems for

the first time and shows great promise. In the future,
this technology will probably dominate the control and
coordination in smart energy distribution grids.

Conclusions
In this paper, five different applications emerging at the
intersection of computational intelligence and environ-
mental engineering were presented. It could be shown
that (1) using substrate pretreatment-specific biogas pro-
duction of a biogas plant can be improved and that (2)
machine learning methods can learn to measure import-
ant process values out of UV/vis and MIR spectroscopic
measurements. (3) A simulation model of a biogas plant
can predict its behavior and can be used to optimize and
control plant operation. (4) Cluster analysis is able to
analyze the incineration process of a pellet heater, and
(5) multi-agent systems can control sewerage systems.
The obtained results show that environmental systems
can be substantially improved by intelligent data ana-
lysis, optimization, and control methods. Most of the
presented technologies have a clear advantage because
of a low cost-benefit ratio. Compared to classical
methods of mechanical or chemical engineering, the in-
stallation of an intelligent data analysis and automation
system requires only a fraction of the costs that are ne-
cessary to, e.g., enlarge the volume of an anaerobic di-
gester or a storm water retention tank. And, the results
in terms of process improvement are similar.
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