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Abstract

Background: For a new district in the Dutch city Meppel, a hybrid energy concept is developed based on bio-gas
co-generation. The generated electricity is used to power domestic heat pumps which supply thermal energy for
domestic hot water and space heating demand of households. In this paper, we investigate direct control of the heat
pumps by the utility and how the large-scale optimization problem that is created can be reduced significantly.

Methods: Two different linear programming control methods (global MILP and time scale MILP) are presented. The
latter solves large-scale optimization problems in considerably less computational time. For simulation purposes, data
of household thermal demand is obtained from prediction models developed for this research. The control methods
are compared with a reference control method resembling PI on/off control of each heat pump.

Results: The reference control results in a dynamic electricity consumption with many peak loads on the network,
which indicates a high level of simultaneous running heat pumps at those times. Both methods of mix integer linear
programming (MILP) control of the heat pumps lead to a much improved, almost flat electricity consumption profile.

Conclusions: Both optimization control methods are equally able to minimize the maximum peak consumption of
electric power by the heat pumps, but the time scale MILP method requires much less computational effort. Future
work is dedicated on further development of optimized control of the heat pumps and the central CHP.

Keywords: Smart grid, Linear programming control, Heat pumps, Thermal storage, Load balancing, Demand side
management

Background
Introduction
To reduce fossil fuel usage and increase the share of
renewable energy, the Netherlands plans for 14 % renew-
able energy of the total energy consumption by the year
2020 and 100 % in the year 2050 [1]. However, integra-
tion of renewable energy in existing distribution grids may
cause problems with power stability in some regions at
times when there is a large amount of energy offered by
solar PV installations or wind turbines and low demand
[2]. Smart grids are seen as a possible solution and there-
fore the Dutch government started the Topteam Energy
which defined the innovation contract smart grids [3] with
the following goals:
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• reduce costs for integration of renewable energy into
distribution grids

• increase consumer awareness and energy savings
• contribute to a competitive energy market and

consumer choice resulting in reductions in energy
prices

It is widely recognized that smart grids are required to
balance energy production with loads and energy storage.
This is made possible by sophisticated control strategies
and communication networks.
To increase the share of renewable energy in today’s

energy system, it is not always necessary to integrate the
renewable energy into existing grids.With so-called smart
microgrids, it is possible to connect or disconnect a region
to or from the main distribution grid. In Meppel, a small
city in the Netherlands, there is a plan to build a dis-
trict (Nieuwveenselanden) with an energy system called
MeppelEnergie [4–6] that can be defined as a smart micro-
grid and which has the goal to become almost 100 %
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renewable. The heart of the system is a combined heat and
power (CHP) unit which is supplied with biogas from a
nearby wastewater treatment facility. Part of the houses in
the district are connected to the district heating system,
while other houses have a heat pump. Both the heat for the
district heating system and power for the heat pumps are
supplied by the CHP. This is a typical case where a smart
grid is required for load balancing purposes, otherwise
the district would need frequent power exchanges with
the existing power grid. Without a smart grid, this would
probably involve large peak loads and strengthening of the
existing grid would be required, involving high costs for
new cabling and bi-directional transformers. For different
cases in Germany involving regional solar PV generation,
these effects are explained by Nykamp [2]. Therefore, the
heat pumps should be scheduled in such a way that they
only consume, if possible, the electricity produced by the
CHP. If this is not possible, the remaining energy has to be
bought on the electricity market at minimal cost.
The planning of a group of heating systems may have

many objectives in practice. In the Meppel project, biogas
is transported through a dedicated pipeline and electric
energy is distributed through a private cable and con-
verted by heating supply systems. In general, generators
and transport equipment have to be dimensioned for
the maximal peak consumption. Thus, the main objec-
tive is minimizing the maximal consumption which may
decrease investments in the system and will also lead to
maximum self consumption of the generated electricity by
the biogas CHP.
This paper develops a smart grid control method with

the goal to minimize peak consumption. We further
demonstrate the importance of this method for the Mep-
pel case. After a review of related work in section “Related
work”, a more detailed problem formulation which leads
to an algorithm called global mix integer linear pro-
gramming (MILP) control is given in section “Problem
statement and global MILP control”. As this algorithm
requires a lot of computational power, we develop an algo-
rithm called time scale MILP control in section “Time
scale MILP control”. The Meppel case is explained in
section “Case application”. The simulation results are pre-
sented in section “Results and discussion”. Finally, we draw
conclusions in section “Conclusions”.

Related work
The problem of minimizing peak consumption of a group
of heat pumps is a typical smart grid control problem.
As demonstrated by Nykamp [2], integration of renewable
energy (e.g., by wind turbines, solar PV, and biomass con-
version) requires implementation of control strategies for
load balancing and load shifting in electrical grids. This is
either due to the stochastic nature of the energy produc-
tion or due to supply limitations of the biomass. In the

Meppel case, the supply of biogas to the CHP which gen-
erates the electricity for the heat pumps is limited. Besides
that, the biogas supply is approximately constant in time
and it is not possible to divert the biogas supply to other
consumers. These are totally different circumstances than
existing natural gas CHP systems. The natural gas sup-
ply system is widespread within the Netherlands, and for
CHP’s on natural gas, there are usually no limitations to
size or consumption patterns.
For load balancing purposes, Stadler et al. [7] introduce

three possible device control strategies for refrigerators
which are also applicable for heat pumps.

1. Autonomous control is performed by the device
itself, e.g., by sensing the grid frequency, interpreting
the difference with a nominal frequency, and making
decisions to start or stop the heat pump. In our case,
we expect poor results from this type of control
because there are also constraints on thermal
comfort which are likely to create conflicts in time
with reaching grid stability.

2. Price-based control is the dominating control
strategy for scheduling devices within a smart grid.
The heat pump determines an operational schedule
based on dynamic price information which is sent to
the heat pumps by the utility. However, to make a
sensible decision about future schedules, it is
required that a heat pump controller is able to
predict future heat demand of the building. For this
purpose, model predictive control is implemented
within the heat pump controller. For climate control
of a single building with a heat pump and
time-varying electricity prices, model predictive
control is developed and demonstrated by Halvgaard
et al. [8]. For groups of devices, a smart grid control
strategy based on the principles of price-based
control is developed within the TRIANA smart grid
control methodology by Molderink [9], Bakker [10],
and Bosman [11]. Bosman demonstrates the use of
this type of control for a group of microCHP’s in [11],
while Bakker also demonstrates results for a group of
heat pumps in [10]. These examples demonstrate
effectiveness of price-based control. The only minor
disadvantage of price-based control is the need for an
intelligent heat pump controller for each house.

3. Direct control involves making control decisions for
each heat pump on the utility level. This has the
advantage that the heat pump controllers can be
simple. On the other hand, the utility has to solve
large-scale optimization problems (in our case,
minimizing peak electricity consumption) if there are
a large number of heat pumps to control. Besides
that, the optimization has to include heat demand
predictions for each house at every time step of the
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calculation. In the Meppel case, the number of houses
with a heat pump connected to a single biogas CHP
is limited to 135. For mathematical optimization, we
estimate that this is a feasible challenge and that is
why we chose this method for the Meppel case.

The mathematical background of the minimizing peak
problem is presented in [12] which proves that the prob-
lem of minimizing peak is NP-complete. A somewhat
similar problem was considered by Bosman et al. [13, 14]
who studied a microCHP planning problem and also
proved that minimizing peak is NP-complete in their
model [15]. Bosman et al. [11] also present a dynamic pro-
gramming algorithm for the microCHP planning prob-
lem whose time complexity is O(T3C+1) where T is
the number of time intervals and C is the number of
microCHPs.
The main contribution of this paper is that we demon-

strate by development of the time scale control method
and the application within the Meppel case that the num-
ber of variables and equations which are part of the
large-scale optimization problem on the utility level can
be reduced considerably while the control objective of
minimizing the peak consumption is still reached.

Methods
Problem statement and global MILP control
In this section, we present a mathematical description of
the studied model and possible applications of this model.
The model is set up to be generally applicable for any type
of heating appliance. Typical appliances for heating water
are electrical and gas heating systems, heat pumps, and
combined heat and power units (microCHP). The heated
water is stored in buffers to be prepared for the demand
of inhabitants. In our model, a house consists of two local
heating systems, one for space heating and the other for
tap. A schematic overview of the model is presented in
Fig. 1. It consists of:

• a supply which represents some source of energy
(e.g., electricity, gas),

• a converter which converts the energy into heat (hot
water),

• a buffer which stores heat for later usage, and
• a demand which represents the consumption profile

of heat.

In principle, the presented model can consider arbitrary
types of energy but in this paper, we use electricity and
heat to distinguish consumed and produced energy. This
simple model of a local heating system cannot only be
applied for heating water but has many other applications
in smart grids (e.g., control of fridges and freezers) and
inventory management. We come back on this at the end
of this section.

We consider a discrete time model for the considered
problem, meaning that we split the planning period into
T time intervals of the same length. We consider a set
C = {1, . . . ,C} of C heating systems and a set
T = {1, . . . ,T} of T time intervals. Note that the heating
of a house is split into two independent heating systems
(see Fig. 1). In this paper, the letter c is always an index of
a heating system (either space heating or tap) and t is an
index of a time interval. For mathematical purposes, we
separate a heating system into a converter, a buffer, and
demand; see Fig. 1. We say “a converter c,” “a buffer c,” or
“a demand c” to refer to the devices of the heating system
c ∈ C.
We consider a simple converter which has only two

states: In every time interval, the converter is either turned
on or turned off. The amount of consumed electricity is
Ec and the amount of produced heat (or any other form of
energy) is Hc during one time interval in which the con-
verter c ∈ C is turned on. If the converter is turned off,
then it consumes and produces no energy. Let xc,t ∈ {0, 1}
be the variable indicating whether the converter c ∈ C is
running in time interval t ∈ T .
The state of charge of a buffer c ∈ C at the beginning of

time interval t ∈ T is denoted by sc,t which represents the
amount of heat in the buffer. Note that sc,T+1 is the state of
charge at the end of planning period. The state of charge
sc,t is limited by an upper bound Uc.
The amount of consumed heat by the inhabitants of the

house from heating system c ∈ C during time interval
t ∈ T is denoted by Dc,t . This amount is assumed to be
given and is called the demand of heating system c. In
this paper, we study offline problems, so we assume that
demands Dc,t are given for the whole planning period.
The operational variables of the converters xc,t and

the states of charge of buffers sc,t are restricted by the
following constraints.

sc,t+1 = sc,t + Hcxc,t − Dc,t for c ∈ C, t ∈ T (1)
0≤ sc,t ≤ Uc for c ∈ C, t ∈{1, . . . ,T+ 1}(2)
xc,t ∈ {0, 1} for c ∈ C, t ∈ T (3)

Equation 1 is the charging equation of the buffer. During
time interval t ∈ T , the state of charge sc,t of a buffer c ∈ C
is increased by the production of the converter which is
Hcxc,t and it is decreased by the demandDc,t . Equations (2)
and (3) ensure that the domains of variables sc,t and xc,t ,
respectively, are taken into account. Note that the initial
state of charge sc,1 can be fixed (e.g., by setting sc,1 = Uc

2 ).
In this paper, we consider the objective function of

minimizing the peak:

minimize m
where m ≥ ∑

c∈C Ecxc,t for t ∈ T (4)
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Fig. 1 Schematic picture of a house with two separated heating systems for space heating and tap

Since Ecxc,t is the amount of consumed electricity by a
converter c in time interval t, the sum

∑
c∈C Ecxc,t is the

amount of electricity consumed by all converters in time
interval t. Furthermore, the inequality and the objective
function (4) guarantees that the value of the variable m is
the maximal consumption of electricity during one time
period within the whole planning period.
In the following, we give some other possible applica-

tions of this model.
Fridges and freezers: A fridge essentially works in the

opposite way than heating, so it may be modelled sim-
ilarly. However, we have to be careful with the correct
interpretation of all parameters. The state of charge of the
buffer again represents the temperature inside the fridge,
but a higher state of charge means a lower temperature.
The converter does not produce heat to the fridge but it
decreases the temperature inside the fridge, so the con-
verter increases the state of charge of the buffer (fridge).
The demand decreases the state of charge of the fridge due
to thermal loss and usage of the fridge by humans.
Inventory: The considered heating problem is also

related to inventory control problems [16]. A buffer may
represent an inventory and a converter may represent
orders. However, this leads to a situation, where only a
limited capacity of inventory is given and it is only possi-
ble to order a fix amount of goods which is not a typical
situation in inventory management.
Note that the objective function and all constrains are

linear and operational state variables are binary, so con-
straints and the objective (1)–(4) form an instance of
MILP. This instance can be solved by any MILP solver

(see, e.g., [17]) and we call this approach global MILP
control. However, as the number of binary variables may
get too large for planning many houses over a long
planning horizon, this method may get computationally
expensive. Therefore, in the following sections, an algo-
rithm which significantly reduces the number of variables
is given.

Time scale MILP control
The method presented in the previous section creates one
large instance of MILP and solves it by a MILP solver.
This method gives us an optimal solution for the whole
planning period but it may not be suitable for practical
purposes. First, finding an optimal solution requires a lot
of computational power. Next, the prediction of demand
for the distant future may be very inaccurate.
Therefore, we consider an online control in which the

decision which converters will be running is made only for
the coming time interval. On the other hand, we cannot
ignore the future completely. Indeed, we should take more
care about the near future time intervals than the distant
ones because the current decision has stronger impact
on the near future and the prediction is in general more
accurate for the near future.
As the general formal notation of time scale control

may be hard to understand, we use an example to present
the approach. Assume that the upcoming time interval
has index 1. The decision which converters c ∈ C will
be running during the coming time interval 1 needs to
be made, meaning that the values of variables xc,1 need
to be decided. Since also the influence of the very near
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future needs to be detailed, we also consider binary vari-
ables, e.g., for the next two time intervals, i.e., variables
xc,2 and xc,3. For the further future, the plan does not need
to be so precise, so ,e.g., another two time intervals, we
relax the integral constraints, meaning that we require
0 ≤ xc,4, xc,5 ≤ 1. The reason for relaxing these variables is
to decrease the number of integral variables which has the
dominating effect on the computational time required to
solve an MILP instance. From the practical point of view,
these relaxed variables (e.g., xc,4) can signify the probabil-
ity that a converter c will run in time interval 4, and so∑

c∈C Hcxc,4 is the expected demand of electricity.
Following this, for the even more distant future, we

only need a rough planning. In order to explain the idea
of rough planning, let us consider the state of charge
equation, e.g., for time intervals t = 8, 9 and 10.

sc,9 = sc,8 + Hcxc,8 − Dc,8

sc,10 = sc,9 + Hcxc,9 − Dc,9

sc,11 = sc,10 + Hcxc,10 − Dc,10 (5)

We sum these equations and after simplification, we
obtain

sc,11 = sc,8+Hc(xc,8+xc,9+xc,10)−(Dc,8+Dc,9+Dc,10)

(6)

The rough plan for converter c for time intervals
t, t+1, . . . , t′ is now defined by xc,t..t′ = ∑t′

i=t xc,i, that is we
replace time intervals t, t + 1, . . . , t′ by one block of time
intervals t..t′. During this block, converter c consumes
Ecxc,t..t′ electricity and produces Hcxc,t..t′ heat. Using this
notation, the state of charge equation for a block 8..10 of
time intervals t = 8, 9 and 10 is

sc,11 = sc,8 + Hcxc,8..10 − Dc,8..10 (7)

where Dc,8..10 = Dc,8 + Dc,9 + Dc,10 is the cumulative
demand for time intervals 8,9 and 10. In this example,
we replace the three variables xc,8, xc,9, and xc,10 by one
aggregated variable xc,8..10 which is constrained by bounds
0 ≤ xc,8..10 ≤ 3. In this way, we can cover a longer plan-
ning horizon without requiring too many variables in an
MILP instance. Furthermore, note that only the sum of
demands Dc,8..10 for distant future time intervals is impor-
tant. The practical consequence is that the time where a
significant demand occurs does not have to be predicted
precisely, e.g., in the morning, it is sufficient to predict
the amount of hot water demand for evening showers but
the exact time when inhabitants will take a shower can be
approximated.
In our example, we consider rough planning variables

xc,6..7, xc,8..10, and x11..15. In summary, all state of charge
equations are

sc,t+1 = sc,t + Hcxc,t − Dc,t for t = 1, . . . , 5
sc,8 = sc,6 + Hcxc,6..7 − Dc,6..7

sc,11 = sc,8 + Hcxc,8..10 − Dc,8..10

sc,16 = sc,11 + Hcxc,11..15 − Dc,11..15 (8)

for every c ∈ C.
The capacity constraints of buffers remain the same, so

Lc,t ≤ sc,t ≤ Uc,t for t ∈ {1, 2, 3, 4, 5, 6, 8, 11, 16} (9)

The operational constraints of converters now are

xc,t ∈ {0, 1} for t ∈ {1, 2, 3}
0 ≤ xc,t ≤ 1 for t ∈ {4, 5}
0 ≤ xc,6..7 ≤ 2
0 ≤ xc,8..10 ≤ 3
0 ≤ xc,11..15 ≤ 5

and the objective is

minimizem
where m ≥ ∑

c∈C Ecxc,t for t∈ {1, 2, 3, 4, 5}
2m ≥ ∑

c∈C Ecxc,6..7
3m ≥ ∑

c∈C Ecxc,8..10
5m ≥ ∑

c∈C Ecxc,11..15
This instance of MILP problem can be solved by any

MILP solver. The values of variables xc,1 of an optimal
solution are used to determine which converters c ∈ C
should run in the coming time interval 1. For the next
time interval 2, a similar instance of an MILP problem is
created by shifting indices of time intervals by one and
refining the predicted demands Dc,t .
There is no general rule how time intervals should be

split into blocks since it is strongly influenced by the par-
ticular case studies. In this study, we use one specific
choice to study the potential of this approach.

Case application
Both methods of direct control (global and time scale
MILP control) are applied to a specific case involving 135
houses of the Meppel project. Each house is equipped
with two heat pumps, one for domestic hot water and one
for space heating. The applied energy system in Meppel
is explained in detail in [18]. For the present paper, we
investigate the quality of load balancing of heat pump elec-
tricity demand. We compare both types of direct control
with results of reference PI control that is determined by
each heat pump by itself, based on signals from house and
storage thermostats. To generate heat demand profiles,
the following approach is followed:

• develop a thermal model to determine house space
heating demand

• apply measured weather data (we investigate 1 week
with a high space heating demand)



Fink et al. Energy, Sustainability and Society  (2015) 5:33 Page 6 of 10

• define various typical house and household profiles to
generate a variety of space heating and domestic hot
water demand profiles

• simulate space heating demand of the various
households

• determine reference PI control results
• input domestic hot water and space heating demands

into the global and time scale MILP control
algorithms and determine results

In the next sections, the individual steps of the approach
are explained in more details.

Space heating thermalmodel
Suitable methods to determine space heating demand are
listed in [19] and include modelling of thermal network,
radiant time series, and transfer function methods. In the
following, we develop a so-called grey-box model, i.e., a
simplified model of a house based on the thermal network
approach. An advantage of this approach is that dynamic
heat demand of a house is described by only a few dif-
ferential equations which are easy to integrate into smart
grid control algorithms. However, model parameters may
not correlate very well with true physical characteristics
of the concerned building. For the purpose of the present
paper, absolute accuracy of the space heating demand
model is of less importance, hence we determined model
parameters by physical estimation and not, e.g., by apply-
ing identification techniques using simulated or measured
data. Validation of accuracy of the applied space heating
demand model is part of our future work. The thermal
network representation of the simplified model is shown
in Fig. 2. For the indoor part, the model contains lumped
thermal masses for the interior zone and floor structure.
We assume an air-based heating system which gives heat-
ing input directly into the zone. Towards the exterior,
there are two lumped thermal masses, one for the interior
walls and one for the exterior walls of the house enve-
lope. The main heat loss contributions to the ambient are
through the envelope walls, windows, and roof.
The model equations are formulated as follows:

Cwo · dTwo
dt

= (Ta − Two) · Awall
Rwo−a

+ (Twi − Two) · Awall
Rwi−wo

Cwi · dTwi
dt

= (Two − Twi) · Awall
Rwi-wo

+ (Tz − Twi) · Awall
Rz−wi

Cf · dTf

dt
= (Tz − Tf ) · Af

Rz−f
+ (Tcs − Tf ) · Af

Rf−cs

Cz · dTz
dt

= Dc,t + qvent + qinf + qgain + (Tf − Tz) · Af

Rz−f

+ (Twi−Tz) · Awall
Rwall

+ (Ta − Tz) · Awindows
Rwindows

+ (Ta − Tz) · Aroof
Rroof

(10)

The terms in these equations are explained in
Table 1. Besides heat loss to the ambient, infiltration-
and ventilation-associated heat losses (qinf and qvent) are
determined by the following equations:

qinf = φair,inf · ρair · cp,air · (Ta − Tz)

qvent = φair,vent · ρair · cp,air · (Ta − Tz) · (1 − γhr) (11)

The used terms are also explained in Table 1. Ventilation
air flow values φair,vent in m3/h are defined by schedules
given in section “House and household case information”.
Infiltration air flows φair,inf are related to leakages of the
building and are assumed as constant values. We defined
some variations including heat recovery ventilation with a
certain heat recovery efficiency γhr.
Besides heat losses, there are scheduled heat gains

(qgain) due to resident and electric appliance dissipations.
The applied schedule is given in section “House and
household case information”. For the present paper, solar
energy absorbed by the interior is neglected because we
study a relatively cold and cloudy week.
The heat demand Dc,t is calculated by solving the model

equations including a simple zone temperature control.
For this, setpoint schedules for the zone temperature are
defined in section “House and household case informa-
tion”. The demand Dc,t for every house c and time interval
t is determined by the following rules:

• If the zone temperature Tz equals the setpoint, then
the demand Dc,t is the amount of energy which the
heating system has to generate to keep the zone
temperature constant.

• If the setpoint is increased, then the demand Dc,t is
increased to raise the zone temperature in a given
warmup speed dTz

dt .• If the zone temperature Tz is above the setpoint (e.g.,
due to decreasing the setpoint or natural heating by
internal gains), the demand Dc,t is the minimal
non-negative amount of energy which keeps the zone
temperature above the setpoint.

Application of weather data
As we explained in the previous section, we limited our
investigation to heat loss due to temperature differences
between the zone temperature and ambient tempera-
tures. Effects of solar gains and wind speeds on the heat
demand are excluded. Weather data containing hourly
average ambient temperatures are obtained from the web-
site of the Dutch national weather institute ([20]). We
choose data of weather station Hoogeveen which is close
to Meppel. We investigate the coldest week of 2012 as this
week results in a relatively high heat demand for space
heating.
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Fig. 2 Applied thermal network model

House and household case information
We consider a total of 135 households and we define three
types of households (see Table 2) living in semi-detached
and detached houses. Houses will be built in three con-
struction phases and later phases will have a better ther-
mal insulation due to tightening regulations. In this study,
we assume that in each phase, 30 semi-detached and 15
detached houses will be built. Rc values of semi-detached
houses in the respective construction phases are 3.5, 5.0,
and 7.5m2K/W and the Rc values of detached houses are
5.0, 7.5, and 10.0m2K/W .

Table 1 Nomenclature energy system characterization

Term Signification

Ta Ambient temperature

Tz , Cz Zone (room) temperature and thermal capacity

Two, Cwo Outside wall temperature and thermal capacity

Twi, Cwi Inside wall temperature and thermal capacity

Tf , Cf Zone floor temperature and thermal capacity

Tcs Cellar or creeping space temperature

Rroof Thermal resistance of roof

Rwindow Thermal resistance of windows

Rwo−a Thermal resistance between outside wall and ambient

Rwi-wo Thermal resistance between outside and inside wall

Rz−wi Thermal resistance between zone and inside wall

Rz−f Thermal resistance between zone and floor

Rf−cs Thermal resistance between floor and concrete structure

qvent Ventilation heat flow

qinf Infiltration heat flow

qgain Internal gain heat flow

Dc,t Heating load flow (heating Demand)

φair,inf Infiltration air flow [m3/h]

φair,vent Ventilation air flow [m3/h]

ρair Air density

cp,air Specific heat capacity of air

We define a lower setpoint for the zone temperature
(18 ◦C) during working hours and night and a higher
setpoint temperature (20 ◦C) otherwise. We also define
domestic hot water demand for morning, afternoon, and
evening peaks. See Table 2 for schedules of the tempera-
ture setpoints and energy demands for hot water.

Simulation results of heating demand
The model equations given in section “Space heating
thermal model” are solved using a 15-min time step
which is required as a minimum time step for controlling
the thermal storage and to calculate heat pump operation
times. To obtain 15-min weather data, we applied linear
interpolation of the 1-h data values.
We assume a heat pump coefficient of performance

(COP) of 4.5 for space heating and 2.5 for domestic hot
water generation during the simulation. With that, we
obtain as average electricity input 116.4 kW for space
heating and 19.3 kW for domestic hot water, leading to
135.7 kW total average electricity demand. If the MILP
control performs well on minimizing peaks, we expect
control schedules for the heat pumps to give results close
to this average electricity demand.

Results and discussion
In Fig. 3, we show the total electric energy consumption
of the three methods of control (reference control, global
MILP control, and time scale MILP control). The ref-
erence control, which resembles PI control, results in a
dynamic electricity consumption withmany peak loads on
the network, which indicates a high level of simultaneous
running heat pumps at those times.
As seen on Fig. 3, both methods of MILP control of the

heat pumps lead to a much improved, almost flat electric-
ity consumption profile. It is also demonstrated that the
result of time scale MILP control is very close to global
MILP control. The average for both is 135.6 kW. The
peak reduction compared to reference control is 98 % for
global MILP control and 96 % for time scaleMILP control.
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Table 2 Types of households, the number of household types in both types of houses, schedules of higher temperature setting, and
hot water demands

Type of household Young couple Young family Elderly people

Number of persons in a household 2 4 2

Number of houses semi-detached 27 54 9

detached 12 27 6

Higher setpoint weekdays 17–22 8–22 10–23

weekend 9–23 9–23 10–23

Hot water on weekdays morning 15 MJ 8 MJ 4 MJ

afternoon 0 MJ 4 MJ 4 MJ

evening 20 MJ 24 MJ 20 MJ

Hot water on weekend morning 8 MJ 4 MJ 4 MJ

afternoon 4 MJ 4 MJ 4 MJ

evening 24 MJ 32 MJ 24 MJ

If we consider this almost equal performance and take
into account the much reduced computational effort of
time scale MILP control, we prefer this method for future
algorithm development.
The energy system described in section “Introduction”

contains a central CHP. The obtained flat electricity
demand profile of the heat pumps may be generated
entirely by the central CHP but this depends on the pos-
sibility to simultaneously store or use the produced heat
by the CHP in a connected district heating system. Part
of future work is to study possible CHP control schemes
more closely, focusing on stable CHP operation, optimal

sustainability, and optimal profitability in relation to vary-
ing external grid prices.
Another important quality aspect of the heat pump

operation schedules obtained from the optimized con-
trol is the experienced thermal comfort within the houses.
This is influenced by the upper bound Uc of the state
of charge sc,t (Eq. (3)). In Fig. 4, we show the total
electric energy consumption of the heat pumps sorted
from highest to lowest consumption. The MILP control
results in a more horizontal distribution than the ref-
erence control. In fact, depending on the value of the
upper bound Uc, a whole continuum of slopes between

Fig. 3 Case results
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Fig. 4 Sorted case results

the slope of the reference control and MILP control is
possible. For the reference control, the value of Uc is
approximately zero, i.e., the interior temperature equals
the defined setpoints in time, except for the warming up
and cooling down times when the setpoint is increased
or decreased from a previous state. During those times,
the interior temperature needs some time to change due
to thermal mass effects within the house. Part of our
future research is to investigate the quality of the inte-
rior temperature in relation to the value of the upper
bound Uc.

Conclusions
In this paper, we investigate how well a group of heat
pumps for 135 different households can be controlled to
minimize peaks within the electricity distribution net-
work by twomethods of direct control. The significance of
this research is that this type of control enables integration
of renewable energy within a microelectricity grid. With-
out this control, power consumption peaks would occur
frequently and this results into higher investments needed
for network strengthening.
From simulations with a simplified thermal network

model of the houses, we obtained heat demand data
for space heating. For the simulations, we defined occu-
pancy schedules and different insulation properties of the
houses. We also defined domestic hot water demand pro-
files for three types of households. We compare the total
electricity consumption of all the heat pumps for the
following control methods: reference (PI) control where
each heat pump determines itself when to switch on or

off, and two forms of direct control: global MILP control
and time scale MILP control. The latter has the advan-
tage of a much reduced scale for solving the optimization
problem.
In the defined case of 135 houses, MILP control

decreases electricity peaks by 96 % compared to refer-
ence control. The difference between global and time
scale MILP control is small. As time scale MILP control
is computationally much more efficient, we propose to
use time scale MILP control. The influence of the cho-
sen time scaling on computational time and the quality
of the achieved result is part of future work. Although
the results look promising, due to the high level of peak
reduction, future work will be dedicated to investigate
the resulting thermal comfort as a result of the obtained
heat pump planning. Also part of future work is to inves-
tigate methods of reaching social fairness in heat pump
planning and integrating this work into the TRIANA
smart grid control method [21] to investigate possible
CHP control schemes with a focus on stability, sustainabil-
ity, and profitability in relation to varying electricity grid
prices.
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