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system for stand-alone microgrids
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Abstract

Background: An offline optimization approach based on energy storage management response in a microgrid was not
fast and not reliable enough to control and adjust the system efficiently after the loss of the utility grid. Thus, it causes
system inefficiency and collapse in the presence of violent changes of loads or outage of distributed generations. To
solve such a problem, more real-time management is needed. Any changes in loads/generations should be
compensated successfully by a battery energy storage system (BESS) in a short period of time.

Methods: This paper presents a new method for the intelligent online management of both active and reactive
power of a BESS based on a radial basis function neural network (RBFNN) incorporating particle swarm optimization
(PSO) to prevent the stand-alone microgrid from instability and system collapse. BESS is centrally controlled by a
controller developed by the proposed RBFNN. PSO is used to determine the optimized active and reactive power at
every load/generation changing situation to monitor the effect of system frequency, voltage, and reference power
regulation. These optimized power data are then employed as target data for the RBFNN generalization and training
process. To enable the online updating of the operating parameters, the proposed RBFNN is implemented in the
management process. With an appropriate RBFNN training, the optimum active and reactive power can directly be
obtained without the necessity of performing the PSO optimization process at any change of load/generation.

Results: The results show that the predictive results of the proposed RBFNN model only slightly differed from the target
results based on PSO and have a minimum statistical error compared to the predictive results based on the multilayer
perceptron neural network (MLPNN) model.

Conclusions: The proposed RBFNN is suitable for the online estimation of the active and reactive power of BESS and can
be used for real-time energy storage management as an online controller.

Keywords: RBF neural network, Battery energy storage system, Energy management, Frequency and voltage control,
Microgrid, Optimization

Background
During the great earthquake and tsunami in March 2011
and the heavy snowfall disaster in Tokushima, Japan, in
December 2014, thousands of people had no access to
electricity. IP telephone systems using the Internet
which spreads in almost all families were not able to
operate at that time. It caused difficulties to rescue
teams for providing assistance. Moreover, victims who

lived in their homes could not get warm as their heaters
were not able to operate at the time of the disaster [1].
To solve such a situation, facilities are needed to provide
electricity at the time of a blackout or disaster. Battery
energy storage systems (BESS) can offer a good solution
to such a system. Advantages of BESS include an im-
provement of the system frequency, especially when
BESS is used for system frequency control. For small
disturbances, BESS is discharging when the system
frequency is lower than the nominal frequency of 50 or
60 Hz. On the other hand, BESS is charging when the
system frequency is higher than the nominal frequency
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of 50 or 60 Hz. For large disturbances, BESS can en-
hance the performance of the system frequency control
by integrating BESS with an under-frequency load shed-
ding scheme or an under- or over-frequency generation
trip. With these different functions, it can be concluded
that BESS is a rapid and flexible element for power
systems [2–4].
After the 2011 Japan earthquake and tsunami in the

Tōhoku area, a micro/smart grid developed in Japan has
been focused on resilience. As a solution of micro/smart
grids, it promised to simplify the wide penetration of
renewable energy sources (RESs) and BESS units into
the power system and increase the reliability of electrical
supply to consumers, but decrease system losses and
greenhouse gas emissions. Due to their potential benefits
of providing secure, reliable, efficient, sustainable, and
environmentally friendly electricity from RESs, micro/
smart grids have received great attention and became
remarkable in electricity [5].
A concept of a micro/smart grid is demonstrated as a

system that can intelligently integrate the actions of all
users incorporating generators or loads in a manner suit-
able for providing an economically sustainable and se-
cure power system [6]. All signals at loads/generations
will be processed by the system management and react
to the situations which occurred optimally. By an intelli-
gent management of the active and reactive power of
BESS for a stand-alone microgrid, this technique can
prevent the stand-alone microgrid from instability and
collapse in the presence of violent changes of loads or
outage of distributed generations. In a number of stud-
ies, the aspect of a managing reference power of distrib-
uted generations in the distribution system has been
presented [7–9]. In [10], the management of BESS
power for the typical 4Q-load has been proposed and
analyzed. Furthermore, an offline optimization approach
based on a real-time energy storage management was
proposed in [11]. To control the system as efficiently as
possible, more real-time management is needed. Any
changes in loads/generations should be compensated
successfully by the BESS in a short period of time. To
perform the real-time online management operation in
this study, radial basis function neural networks (RBFNNs)
seem to be most suitable for such an online modeling
method in terms of a fast time calculation process and in-
stant responses. The advantages of RBFNN are two major
issues: the training processes are substantially faster than
the multilayer perceptron neural networks (MLPNN) and
RBFNN does not encounter with the local minima
problems [12, 13]. RBFNN provides a very significant
tool for optimization tasks as they are extremely power-
ful computational devices with the capability of parallel
processing, learning, generalization, and universal ap-
proximation [14, 15].

This paper deals with the online intelligent manage-
ment of active and reactive power of the BESS installed
in the microgrid to prevent the microgrid from instabil-
ity and collapse in the presence of violent changes of
loads or outage of distributed generations after the loss
of the utility grid (e.g., blackout or disaster). The BESS is
centrally controlled by a controller developed by the
proposed RBFNN. The active and reactive power of the
BESS are managed by using the RBFNN incorporating a
particle swarm optimization (PSO) process with the
objective of maintaining the frequency and voltage of
the stand-alone microgrid within acceptable ranges.
First, the optimum settings of the BESS which are the
optimized active and reactive power are determined by
PSO. The PSO process has to reply to every change in
load/generation to achieve the optimum operating condi-
tions for the entire system. These optimized operating data
are then applied as target data for RBFNN generalization
and training processes. To enable the online updating of
the operating parameters, the proposed RBFNN is imple-
mented in the management process, and the database ex-
tracted from the PSO process is used as target data in the
RBFNN generalization and training. With an appropriate
RBFNN training, the well-trained RBFNN can be employed
as the online mode where the system is using new input
data. By applying the proposed RBFNN approach in the
system, the optimum active and reactive power of the BESS
can directly be obtained without the necessity of
performing the optimization process-based PSO at any
change in load/generation. The predictive results of the
proposed RBFNN are compared with the predictive results
of the MLPNN, and it is clearly shown that the proposed
RBFNN-based online management method gave the best
performance in predicting the optimum active and reactive
power of the BESS for the microgrid.
This paper, compared to other previous research con-

tributions, deals with the ability to control the system as
efficiently as possible by designing and implementing
the real-time/online management of the BESS based on
the proposed RBFNN for using it as an online controller
to control, manage, and prevent the microgrid from
instability and collapse in the presence of violent changes
of loads or outage of distributed generations after the loss
of the utility grid.

System configuration
Microgrid study system
The microgrid structure considered in this study consists
of four major power sources: the 1.2-MW mini-hydro
generator, the 2-MW hydro generator, the 3-MW solar
photovoltaic sources, and the BESS as shown in Fig. 1.
Each distributed generation unit has its own local control-
ler to handle the relevant electrical variables. This system
also consists of a group of feeders which could be a part
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of the distribution design. The commercial loads 1 and 4
are the critical loads with a peak power of 1.85 and
1.9 MW, respectively. Office load 2, residential load 3, and
residential load 5 are the non-critical loads with a peak
power of 1.7, 1.75, and 2.4 MW, respectively.

Solar photovoltaic generation
The output power of solar photovoltaic (PV) is uncertain
as it is mostly affected by environmental factors, particu-
larly environmental random changes inevitably leading
to a constant change of the output power of solar PV
[16]. In order to illustrate the solar PV characteristics
under the operating conditions, the influence of solar
radiation and atmosphere temperature are designed. The
temperature effect is denoted using a temperature coeffi-
cient of Tco (1/c°). The efficiency of the inverter is multi-
plied by the DC output converting DC to the AC output
as in (1):

PPV ¼ nPVPratePV G=G0ð Þ 1−T co TA−25∘ð Þð Þηinvηrel ð1Þ

where nPV is the PV module number, Prate PV is the PV
array rated power (W), G is the global insolation on PV
array (W/m2), G0 is the standard amount of the insola-
tion rating capacity of PV modules (W/m2), TA is the
ambient temperature, TCO is the temperature coefficient
of the maximum power of PV, rel is the relative
efficiency of the PV modules, and inv is the efficiency
of the inverter.

BESS
RESs are depending on weather conditions. Thus, a
BESS is used to store surplus electrical energy to

maintain the system frequency and voltage and supplies
the power for loading into a microgrid in the case of low
solar ratio or load changes. Moreover, the BESS can
smooth the fluctuation of solar radiation and enhance
the load availability. A more detailed BESS information,
along with the most BESS models, is presented in vari-
ous research papers, for instance in [17, 18].
The structure of the BESS comprises power con-

verters, battery cells, and control parts, which are shown
in Fig 2.
In this study, in the case of a grid-connected mode,

in which the power generated by the microgrid sys-
tem is higher than the load demand, the surplus
power can be stored in a BESS for future uses. On
the contrary, when there is any shortage in the power
generation of the microgrid, the stored power is used
to supply the load. For a stand-alone mode, the main
purpose of the BESS is to stabilize the microgrid from
instability and collapse in the presence of violent
changes of loads or outage of distributed generations
[3, 4].
From the BESS structure, the output of the DC voltage

is expressed as:

Fig. 1 The typical microgrid system

Fig. 2 The structure of the BESS in an interconnection diagram
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ΔEdo ¼ 6
ffiffiffi
6

p

π
Et ð2Þ

where Et is the AC voltage between a line and neutral.
The equivalent circuit analysis of a BESS consists of a

converter connected to an equivalent battery, as shown
in Fig. 3. The terminal voltage of the equivalent battery
is calculated from:

Ebt ¼ ΔEdo cosα−rcIBESS

¼ 3
ffiffiffi
6

p

π
Et cosα1− cosα2ð Þ− 6

π
XcoIBESS ð3Þ

According to the equivalent circuit of the BESS, the
expression of the DC current flowing into the battery is
expressed as:

IBESS ¼ Ebt−Eboc−Eb1

rbt þ rbs
ð4Þ

where

Eboc ¼ rbp
1þ STbp

IBESS ð5Þ

Eb1 ¼ rb1
1þ STb1

IBESS ð6Þ

where

Tbp ¼ rbpCbp ð7Þ
Tb1 ¼ rb1Cb1 ð8Þ

According to the converter circuit analysis, the active
and reactive power injected or absorbed by the BESS are:

PBESS ¼ 3
ffiffiffi
6

p

π
EtIBESS cosα1 þ cosα2ð Þ ð9Þ

QBESS ¼
3

ffiffiffi
6

p

π
EtIBESS sinα1 þ sinα2ð Þ ð10Þ

where αi is the firing delay angle of the converter i, Edo
is the maximum DC voltage of the batteries, Eb1 is the
battery resistance, Ebt is the phase voltage of the battery
side, Eboc is the battery open circuit voltage, IBESS is the
DC current through the battery, PBESS is the active

power provided by the batteries, QBESS is the reactive
power provided by the batteries, rc is the battery over-
voltage, rbt is the terminal voltage of the battery, rbs is
the battery internal resistance, rbp is the self-discharge
resistance, and rb1 is the overvoltage resistance [19].
By performing the offline optimization process, the

optimized active and reactive power set points of the
BESS are obtained. These optimized data are then used
as target data for RBFNN/MLPNN generalization and
the training process in the online optimization. With an
appropriate RBFNN/MLPNN training process, the well-
trained RBFNN/MLPNN can be used as the online
mode where the system is using new input data and then
the optimum active and reactive power of the BESS will
be obtained and remotely adjusted via the communica-
tion link to the BESS.

Test system explanation
The proposed online management approach is applied
to the typical microgrid system illustrated in Fig. 1.
To achieve a smart grid system with online capability,
the microgrid is integrated in a highly developed
communication technology which is also connected
with the BESS as well as distributed generations and
loads, thus enabling the coordinated control between
generations and loads. The microgrid will be scanned
by a data acquisition device for every half an hour of
load demand for a 24-h operation. The data acquisi-
tion device measures the power output of solar PV
and all load profiles. The acquired information is used
to control the optimum operation of the BESS in sub-
sequent intervals. The optimum active and reactive
power of the BESS will be calculated by the control
system so that they can be remotely adjusted via the
communication link instantly after the loss of the
utility grid.
Three types of loads are involved in the studied micro-

grid, which are the residential, office, and commercial
loads as shown in Fig. 4. The load profile depends on the
peaks and dips according to the various electricity usage
situations. For the residential loads, a peak load occurs
from 7 pm to 9 pm; for the office and commercial loads, a
peak load occurs from 9 am to 5 pm every day, owing to
the electricity usage during the office hours.

Methods
ANN-based online optimum active and reactive power of
the BESS
The proposed approach for an intelligent online
managing of active and reactive power of BESS con-
sists of a two-stage method based on the PSO
optimization process (stage 1) and the RBFNN or
MLPNN approach (stage 2). The first step before per-
forming the optimization process is to obtain both

Fig. 3 Equivalent circuit of the BESS [18]
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load data and solar PV power output data as the in-
puts of the PSO process. The optimization process is
applied offline using PSO in the first stage in order
to define the optimum daily performance of the BESS.
In this study, the fluctuations of solar PV due to
unpredicted weather conditions are considered in the
case of both a sunny and a rainy day for both the
RBFNN and MLPNN test systems as shown in Fig. 5.
By performing the optimization process using PSO,
the optimized active and reactive power of the BESS
are evaluated. These optimized data are then used as
target data for the RBFNN/MLPNN generalization
and the training process during the second stage.

PSO-based offline optimization (stage 1)
The offline optimization process can be performed by
many methods such as using either a genetic algorithm
(GA), or linear programming, or PSO, etc. However,
according to [20–22], the advantages of PSO include
simplicity, ease of use, high convergence rates, and min-
imal storage requirements. Especially, PSO will be less
dependent on the set of the initial points compared to
other methods, which implies that the convergence algo-
rithm is robust. Thus, the offline optimization process is
performed by using PSO during the first stage in order
to evaluate the optimum daily performance of the BESS
as shown in Fig. 6. Afterwards, these optimized
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parameters are used in the second stage for the RBFNN/
MLPNN offline training process.
The PSO process has to reply to every change in the

load/PV generation in order to achieve the optimum op-
erating conditions for the overall system. Hence, after
any change of the load/PV data, the optimized power
setting of the BESS will also be changed, with the result
that a new optimization process is needed.
PSO is an approach for evaluating the optimal param-

eters of complicated search spaces. PSO is initiated with
a group of random particles to search for these optimal
parameters by updating the generations. At each iter-
ation step, each particle is improved by two values.
These values are called Pbest and Gbest, respectively. Pbest
is the best solution acquired by each particle itself in all
of the previous generations. Gbest is the best value ob-
tained by any particle during all previous iterations [23].
This value is called the best global solution. Each particle
improves its position and velocity by using (11) and (12):

viþ1 ¼ vi þ c1r1 Pbest−xið Þ þ c2r2 Gbest−xið Þ ð11Þ

xiþ1 ¼ viþ1 þ xi ð12Þ

where i = 1, 2,…, N, N is the iteration number, vi is the
velocity of a particle at iteration i, xi is the position of a
particle at iteration i, Pbest is the best solution at iter-
ation i, Gbest is the best global solution at iteration i, r1
is the random number one between 0 and 1, r2 is the
random number two between 0 and 1, and c1 and c2 are
the learning factors.
The learning factors have important effects on the

algorithm convergence rate. Future information for PSO
can be found in [20–23]. In this study, the number of
iteration is 30. Learning factors are c1 and c2 which are
equal to 1.4940. The inertia weight is 0.7920.

For the PSO offline optimization approach, the aim of
this part is to determine the optimized active and react-
ive power of the BESS during every change in the load/
generation based on frequency and voltage control in
the stand-alone microgrid. The final objective function
is chosen and expressed as:

Minimize f ¼ λ1J1 þ λ2J2 ð13Þ
where J1 and J2 are the objective function representing
the active and reactive power of the BESS from (9) and
(10), respectively, and λ1 and λ2 are the weight associ-
ated to J1 and J2, respectively.
The active and reactive power dispatched from BESS

are used as the control variables in this study. The con-
straints imposed on the optimization problem are shown
as follows:

Pmin≤P tð Þ≤Pmax ð14Þ
where P(t) is the rated active power of the BESS (MW),
Pmin is the allowed minimum rated active power, and
Pmax is the allowed maximum rated active power of the
BESS.

Qmin≤Q tð Þ≤Qmax ð15Þ
where Q(t) is the rated reactive power of the BESS
(Mvar), Qmin is the allowed minimum rated reactive
power, and Qmax is the allowed maximum rated reactive
power of the BESS.

ωmin≤ω tð Þ≤ωmax ð16Þ
where ω(t) is the nominal frequency of the isolated
microgrid (Hz), ωmin is the allowed minimum nominal
frequency of the isolated microgrid, and ωmax is the
allowed maximum nominal frequency of the isolated
microgrid.

PSO
optimization
approach

Optimized BESS
(active power, reactive power)

Commercial load 1
(active power, reactive power)

Office load 2
(active power, reactive power)

Residential load 3
(active power, reactive power)

Commercial load 4
(active power, reactive power)

Residential load 5
(active power, reactive power)

Solar PV output
(active power, reactive power)

Offline process

Fig. 6 A conceptual structure of the proposed PSO for stage 1
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umin≤u tð Þ≤umax ð17Þ

where u(t) is the nominal voltage of the isolated micro-
grid (pu), umin is the allowed minimum nominal voltage
of the isolated microgrid, and umax is the allowed max-
imum nominal voltage of the isolated microgrid.

Artificial neural network-based online optimization (stage 2)
Artificial neural network (ANN) is simulating the
brain of humans in processing information through a
series of interconnected neurons. It is one of the fam-
ous prediction models as it has the remarkable ability
of mapping complex and highly non-linear input-
output patterns without the knowledge of the actual
model structure. The RBFNN and the MLPNN are
widely used in ANN structures, and their roles affect
the network performance. Nowadays, a performance
comparison of the RBFNN and the MLPNN in several
applications has attracted the attention of researches
[24–26]. Nevertheless, no comparison has been car-
ried out so far between the intelligent management of
active and reactive power of the BESS for a microgrid
management system. Hence, this work proposed the
RBFNN-based online management of the BESS and
selected the MLPNN-based online management of the
BESS for the performance comparison in the system.
To enable the online updating of the operating param-
eters, the RBFNN/MLPNN is proposed and imple-
mented in the management process for the second
stage. Afterwards, the output performance of the
RBFNN and the MLPNN were investigated and
compared in the ANN training and testing results.
During this stage, the database extracted from the
PSO process was used as a target data in the RBFNN/
MLPNN generalization and training process.

RBFNN-based online management of the BESS
The RBFNN is a type of feedforward neural network
which learns using a supervised training method. Ra-
dial functions are a special class of functions, and their
characteristic feature is that the response decreases or
increases with the distance from a center point. It is
obvious that the RBFNN is able to approximate any
reasonable continuous function mapping with a satis-
factory level of accuracy [13–15]. In this paper, the
proposed RBFNN consists of three layers of neurons:
an input layer, a hidden layer, and an output layer.
To enable online updating of the operating parame-

ters, the proposed RBFNN is implemented in stage 2
of the management process as illustrated in Fig. 7.
During the second stage, the database extracted from
stage 1 is used as a target data in the RBFNN
generalization capability. There will be 12 inputs and
2 outputs. The inputs of the system will be the active

and reactive power of commercial load 1 (X1, X2),
respectively, the active and reactive power of office
load 2 (X3, X4), respectively, the active and reactive
power of residential load 3 (X5, X6), respectively, the
active and reactive power of commercial load 4 (X7,
X8), respectively, the active and reactive power of resi-
dential load 5 (X9, X10), respectively, and the active
and reactive power of the solar PV system (X11, X12),
respectively. The outputs of the system are the active
and reactive power of the BESS (Y1, Y2), respectively.
Afterwards, the proposed RBFNN-based online
optimum active and reactive power of the BESS are
demonstrated as a function that maps the input vector
X = [X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12] to
the output vector Y = [Y1, Y2].
The input vector X is applied to all neurons in the

hidden layer. The hidden layer is composed of number q
RBFNNs that are directly connected to all the elements in
the output layer. A node in the hidden layer will produce
a greater output when the presented input pattern is close
to its center. The output of such a node will reduce, as the
distance from the center increases, assuming that a sym-
metrical basis function is applied. Hence, for a given input
pattern, only neurons whose centers are close to the input
pattern will produce non-zero activation values to the in-
put stimulus. The basis function for the jth node in the
hidden layer is determined by a Gaussian exponential
function as follows:

bj �Xð Þ ¼ exp
− �X−μj
� �2

2σ2j

0
B@

1
CA; for j ¼ 1; 2;…; q ð18Þ

where μj is the respective center of the jth neuron in the
hidden layer and σj is the wide of the Gaussian potential
function of the jth neuron in the hidden layer.
The network output Y is formed by a linearly

weighted sum of the number of basis functions in the
hidden layer. The values for the output nodes are calcu-
lated as follows:

Yk ¼
Xq
j¼1

Wkjbj �Xð Þ; for k ¼ 1; 2 ð19Þ

where Yk is the output of the kth node in the output
layer, Wkj is weight between the jth node in the
hidden layer and the kth node in the output layer,
and bj �Xð Þ is the output of the jth node in the hidden
layer.

MLPNN-based online management of the BESS
The MLPNN belongs to the class of feedforward net-
works. In the MLPNN structure, this structure is estab-
lished in a layered feedforward network and is contained
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by an input layer, one or more hidden layers, and an out-
put layer. The weight total of the input data and the
chosen bias are passed through a transfer function to
obtain the output data. The number of hidden layers is
able to be changed based on the problem data in the
training process [12, 27]. In this paper, the MLPNN
consists of three layers of neurons, which demonstrates
that only one hidden layer is included, and one type of
activation function is used in the hidden layer and one
output layer is contained.
To enable an online updating of the operating pa-

rameters, the MLPNN is implemented in stage 2 of
the management process as shown in Fig. 8. During
the second stage, the database extracted from stage 1
is used as a target data in the MLPNN generalization
capability. There will be 12 inputs and 2 outputs. The
inputs of the system will be the active and reactive
power of commercial load 1 (X1, X2), respectively, the
active and reactive power of office load 2 (X3, X4),
respectively, the active and reactive power of residen-
tial load 3 (X5, X6), respectively, the active and react-
ive power of commercial load 4 (X7, X8), respectively,
the active and reactive power of residential load 5
(X9, X10), respectively, and the active and reactive
power of the solar PV system (X11, X12), respectively.

The outputs of the system are both the active and re-
active power of both the BESS (Y1, Y2). Afterwards,
the proposed MLPNN-based online optimum active
and reactive power of the BESS is demonstrated as a
function that maps the input vector X = [X1, X2, X3,
X4, X5, X6, X7, X8, X9, X10, X11, X12] to the output
vector Y = [Y1, Y2].

Table 1 Artificial neural network parameters

Parameters RBFNN MLPNN

Goal (RMSE) 0.001 0.001

Inputs 12 12

Outputs 2 2

Hidden layer 1 1

Training data 940 940

Testing data 202 202

Validation data 202 202

Hidden layer neurons 30 30

Output layer neurons 2 2

Activation function Gaussian exponential Sigmoid

RMSE root mean square error, RBFNN radial basis function neural network,
MLPNN multilayer perceptron neural network

Output layerInput layer Hidden layer

bh
H

Whk

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

X11

X12

Y1

Y2

Wih

bk
0

Yk

Xi

Fig. 8 Description inputs and outputs of the MLPNN-based online
intelligent management of the BESS
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X9

X10

X11

X12

Y1
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b1
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b3

b4

b9

b10

b11

b12

b13

bq

Wkj

Yk

bj

Output layerInput layer Hidden layer

Fig. 7 Description of inputs and outputs of the RBFNN-based online
intelligent management of the BESS
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Each hidden layer summarizes its weighted inputs,
which can be expressed as:

yh nð Þ ¼
XNi

i¼1

Wih nð ÞXi nð Þ þ bHh ð20Þ

where Wih (i = 1, 2,…, Ni, h = 1, 2,…, Nh) are the weights
of the connections between the input and hidden layers,

Xi (i = 1,2,…,Ni) are the input signals, bh
H (h = 1,2,…,Nh)

are the biases at the hidden layer, Ni is the number of
the inputs, and Nh is the number of neurons in the
hidden layer.
The function form of the MLPNN-based online in-

telligent optimum active and reactive power of the
BESS (i.e., the outputs from the hidden layers) can be
presented as follows:
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Fig. 12 The optimum active power of the BESS during a sunny day
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Fig. 11 Regression analysis between the network outputs and the optimization targets based on the RBFNN
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Yk nð Þ ¼
XNh

h¼1

Whk nð Þ⋅f yh nð Þð Þ þ b0k ð21Þ

where

f yh nð Þð Þ ¼ f sigmoid yh nð Þð Þ ¼ 1

1þ e− yh nð Þð Þ ð22Þ

where Yk (k = 1, 2,…, Nk) are the output signals, Whk

(h = 1, 2,…, Nh, k = 1, 2,…, Nk) are the weights of the

connections between the hidden and output layers, bk
0

(k = 1, 2,…, Nk) are the biases at the output layer
nodes, f(yh(n)) is the hidden activation transfer func-
tion, Nh is the number of neurons in the hidden layer,
and Nk is the number of the outputs.
Based on Table 1, the parameter details for the optimum

online active and reactive power of the BESS are shown
and used in the training and the testing database.
Figure 9 depicts the description of inputs and outputs

for estimating the active and reactive power of the BESS
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Fig. 14 The optimum active power of the BESS during a rainy day
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Fig. 13 The optimum reactive power of the BESS during a sunny day
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that have been used for the RBFNN/MLPNN training and
testing process. The RBFNN/MLPNN which is trained
and tested offline has been accomplished to recognize the
pattern and the optimum behavior for the stand-alone
microgrid. Later, the well-trained RBFNN/MLPNN can be
used onsite in the online mode where the system is ap-
plied using new input data. With applying the well-trained
RBFNN/MLPNN in the system, the optimization of
optimum active and reactive power can be directly evalu-
ated without the necessity of performing the optimization
process-based PSO after any change of load/generation.
The overall process of stage 2 is described as follows:

Step 1. Obtain input data and target from the PSO
process.
Step 2. Create the RBFNN/MLPNN network and train
the network until the conditions of the network setting
parameters are reached.
Step 3. Test the network and control the regression
analysis.
Step 4. Store the trained network. Afterwards, the
trained network is ready to be tested by using new input
data for this online process. Please consider that step 1 to
step 4 belong to the offline process.
Step 5. Process new input data to the online process and
obtain the optimum power data of the BESS.

Results and discussion
This part describes the results of the proposed online
predictive power management of the BESS with the

objective of frequency and voltage control of the
stand-alone microgrid by using the proposed RBFNN.
Thus, the proposed RBFNN approach will automatic-
ally determine the optimum power of the BESS in
order to prevent the isolated microgrid from instabil-
ity and collapse in the presence of violent changes of
loads or outage of distributed generations. Afterwards,
the predictive results of the proposed RBFNN model
are compared with the MLPNN model, considering
the error efficiency and positional accuracy.

ANN training results
There are 12 inputs being the time step of the five
load demands and the solar PV data which were fed
into the RBFNN/MLPNN controller. The outputs of
the neural network will be the predictive results of
the optimum active and reactive power of the BESS
which will determine the optimum operation of the
BESS for the stand-alone microgrid.

Table 2 Error indexes for online optimum BESS management

Output MAE MRE RMSE

Y1-based RBF (active power) 0.0004270 0.0001935 9.947 × 10−7

Y2-based RBF (reactive power) 0.0001770 0.0001762 7.821 × 10−7

Y1-based MLP (active power) 0.01485 0.00636 0.00067

Y2-based MLP (reactive power) 0.01696 0.02231 0.00064

MAE mean absolute error, MRE mean relative error, RMSE root mean square
error, RBF radial basis function, MLP multilayer perceptron
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Fig. 15 The optimum reactive power of the BESS during a rainy day
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After the inputs and targets for the training data
are initiated, the next process is the separation of the
data for training, validation, and test. During this
stage, 70 % of the sample data are used for the train-
ing process (i.e., 940 data), 15 % of the sample data
are used for validation (i.e., 202 data), and 15 % for
the test data (i.e., 202 data).
In the training results, the correlation coefficient

(R) is employed to measure the fitness, where a value
closer to 1 indicates a better fit. From Figs. 10 and
11, it is evident that the correlation coefficient of the
proposed RBFNN is higher than the correlation coef-
ficient of the MLPNN and almost equal to 1 (i.e.,

0.9999), which means that the targets are equal to the
outputs of the training data. This reason indicates a
strong correlation between the optimization data and
the neural network output. Hence, it is obvious that
the proposed RBFNN approach allows achieving the
highest accuracy compared to the MLPNN approach.

ANN testing results
The proposed RBFNN/MLPNN has been trained and
tested using the typical microgrid system, load demand
profiles, and solar PV output data during a sunny and a
rainy day for online applications. The active and reactive
power estimated online by the RBFNN/MLPNN are
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Fig. 17 Frequency variation of the stand-alone microgrid during a rainy day
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compared with the data obtained from the PSO
optimization conducted offline as shown in Figs. 12, 13,
14, and 15 for the case of a sunny day and a rainy day,
respectively. Based on Figs. 12, 13, 14 and 15, the
proposed RBFNN approach is better than the
MLPNN approach as far as the accuracy and effi-
ciency are concerned. The MLPNN capability is poor
when compared to the proposed RBFNN. It is obvi-
ous that the proposed RBFNN is able to follow the
target pattern-based PSO at almost every time step
mentioned. Compared with the MLPNN model, the

outputs of the proposed RBFNN model are only
slightly different from the optimization target-based
PSO optimization. It can be concluded that the pro-
posed RBFNN can accurately determine the optimal
active and reactive power of the BESS for the isolated
microgrid.
In this study, three adopted error indexes are used to esti-

mate the RBFNN/MLPNN training performance, including
the mean absolute error (MAE), the mean relative error
(MRE), and the root mean square error (RMSE). These in-
dexes show the learning and generalization error of the
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Fig. 18 Voltage variation of the stand-alone microgrid during a sunny day
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normalized values of the online intelligent management of
the BESS. The computation of these three error indexes
can be expressed as:

MAE ¼ 1
n

Xn
1

Ti−Oij j ð23Þ

MRE ¼ 1
n

Xn
1

Ti−Oij j
Ti

ð24Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n−1

Xn
1

Ti−Oið Þ2
s

ð25Þ

where Ti is the target vector, Oi is the output vector, and
n is the number of training data or the data for each test
in the testing data set.
Compared with the MLPNN model, Table 2 demon-

strates that the proposed RBFNN model has a minimum
statistical error in terms of MAE, MRE, and RMSE. It is
concluded that the proposed RBFNN is an effective way to
improve the prediction accuracy. In addition, the proposed
RBFNN is able to accurately predict the optimum active
and reactive power of the BESS with minimal errors.

Frequency and voltage of stand-alone microgrids
Frequency and voltage profiles are important criteria
which have to be monitored to ensure that the frequency
and voltage of the isolated microgrid are satisfied within
the required limit in order to prevent the isolated microgrid
from instability and collapse in the presence of violent
changes of loads or outage of distributed generations. Look-
ing at the frequency and voltage variation evident in Figs. 16,
17, 18 and 19, it can be seen that the frequency and voltage
variation of the proposed RBFNN are within acceptable
ranges from 49.95 to 50.05 Hz for frequency regulation and
from 0.99 pu to 1 pu for voltage regulation. On the other
hand, the frequency variation of the MLPNN exceeds the
acceptable range of frequency regulation in some parts of
time duration. It is obvious that the proposed RBFNN
approach would achieve better performance in terms
of frequency and voltage regulation compared to the
MLPNN approach.

Conclusions
In this paper, a novel method for the optimum online
intelligent management of active and reactive power of
the BESS for the isolated microgrid is proposed. The
entire BESS is centrally controlled by a controller devel-
oped using the proposed RBFNN model. The results
show that the proposed RBFNN is able to follow the
optimum target-based PSO at almost every time step
mentioned under the changes of typical loads and solar
PV generation with the profiles of a sunny and a rainy
day. Compared with the MLPNN model, the proposed

RBFNN model provides superior performance, when the
error efficiency and positional accuracy are considered.
It can be summarized that the proposed RBFNN model
is appropriate for the online prediction of active and
reactive power of the BESS differing only slightly from
the optimal target result-based PSO and can consequently
be used for real-time energy storage management as an
online controller.
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