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Abstract

Background: Energy models are used to illustrate, calculate and evaluate energy futures under given assumptions.
The results of energy models are energy scenarios representing uncertain energy futures.

Methods: The discussed approach for uncertainty quantification and evaluation is based on Bayesian Model
Averaging for input variables to quantitative energy models. If the premise is accepted that the energy model
results cannot be less uncertain than the input to energy models, the proposed approach provides a lower bound
of associated uncertainty. The evaluation of model-based energy scenario uncertainty in terms of input variable
uncertainty departing from a probabilistic assessment is discussed.

Results: The result is an explicit uncertainty quantification for input variables of energy models based on well-
established measure and probability theory. The quantification of uncertainty helps assessing the predictive
potential of energy scenarios used and allows an evaluation of possible consequences as promoted by energy
scenarios in a highly uncertain economic, environmental, political and social target system.

Conclusions: If societal decisions are vested in computed model results, it is meaningful to accompany these with
an uncertainty assessment. Bayesian Model Averaging (BMA) for input variables of energy models could add to the
currently limited tools for uncertainty assessment of model-based energy scenarios.
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Background
In this paper, a method for an explicit, quantitative un-
certainty assessment suitable for quantitative energy
models with input variables is proposed. The method
discussed renders the uncertainty evaluation more tan-
gible to modellers and receivers of energy model scenar-
ios. It can be perceived as an application of the
discussion provided by Culka in [1]. The proposed quanti-
fication of uncertainty departs from a probabilistic assess-
ment in Bayesian terms. The Bayesian Model Averaging

(BMA) method is a well-established concept which
already has been applied in energy economics [2, 3]. By
intention, the method presented is not novel and relies on
accepted concepts and theories. However, the presented
definition of uncertainty derived from basic probability
theory is novel, and the application was not formulated as
such for energy economic contexts to my knowledge. The
approach could add to the currently limited tools of un-
certainty quantification in energy modelling. The pre-
sented method as discussed in this paper, does not claim
to resolve the question of reliability of model results. In
particular, it is limited to the assessment of input variables,
and a specific kind of assumption uncertainty. It does
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explicitly not address the quantification of model-specific
error propagation.
The objectives of this paper are to (1) raise awareness

that uncertainty in energy scenarios needs to be ad-
dressed (“Background” section ), (2) provide a definition
of an uncertainty measure (“Methods” section) and (3)
exemplify the uncertainty assessment for input variables
with BMA and probabilistic uncertainty in a case study
(Methods: “Case study” section). In this section, I will
focus on the relevance of such a method based on
current practice and criticisms on available uncertainty
assessments. I am briefly introducing the kinds of uncer-
tainty the case study assess, and I am ending the section
with the introduction of the premise which has to be ac-
cepted in order to formulate an uncertainty assessment
for the results of energy models based on their input
variables.
Energy models are representations of the energy sys-

tem including different sub-systems. The target system
cannot be described solely in terms of one system with-
out ignoring decisive elements. In contrast, a system
model of a physical process could be described for ex-
ample by the laws of thermodynamics. Energy models,
however, represent a target system involving physical,
societal, political, environmental and other aspects as
central elements, for example, energy system models
such as TIMES [4], or MESSAGE [5]. Many energy
models aim at a broad inclusion of target system ele-
ments, e.g. an inclusion of different energy carriers, dif-
ferent economic sectors, environmental aspects and
extensive regional inclusion. The results are large and
complex models that are difficult to analyse with respect
to uncertainty and internal error propagation. Error
propagation estimation and analysis of individual models
may even be impossible due to the complexity of math-
ematical formulations, ad hoc assumptions, idealisa-
tions of the target system and lack of empirical
verification (of parts) of the model. The choice of
model boundaries, the level of abstraction or idealisa-
tion, mathematical representation and used optimisa-
tion routines are highly individual for every energy
model. Early attempts of quality improvement for en-
ergy models have mainly focussed on technical model-
ling aspects [6]. Recent evaluation processes include
next to classical uncertainty estimation methods [7]
also approaches for developing adaptive policies under
uncertainty [8]. Classical uncertainty estimation in-
cludes statistical analysis as, for example, output
means, variances, sampling techniques, e.g. Monte
Carlo, sensitivity analysis, and the like. In the light of
uncertainty, which is not uniquely due to model char-
acteristics, other techniques as robustness analysis or
explicit integration of subjective features have been dis-
cussed recently [9]. These methods are focussed on

decision support, which is especially relevant if energy
model results are used to derive recommendations.
Models are used to compute scenarios of the energy

system in future. These may be demanded by economy,
political institutions or stakeholders. Assisting the evalu-
ation of impacts for policy analysis is a central role of
quantitative energy modelling [10, 11]. Mathematical en-
ergy models are a simplified and idealised representation
of a target system. Due to these simplifications and idea-
lisations of mathematical models, the uncertainty re-
garding assumptions and stochastic processes in (parts
of ) the energy system being modelled, energy models
and their results—energy scenarios—face uncertainty. As
energy scenarios can serve for political advice and may
be influential for political decisions, an uncertainty ana-
lysis for energy scenarios seems to be necessary. For the
decision maker, it would provide relevant information
regarding the relevance and reliability of energy
scenarios.
What the term “scenario” refers to is not clearly de-

fined in the literature. Van Notten describes more than
11 definitions and common applications for scenarios
[12]. Lindgren concisely summarises paradoxes and ap-
plications for scenario techniques [13]. Both agree that
scenario building is a fundamentally intuitive and cre-
ative process, involving associations, inferred causal pat-
terns and other ideas. Scenarios are a widely used
technique if future developments are to be evaluated
[14]. Önkal et al. differentiate between method-based
statistical forecasting and forecasting with scenarios and
emphasise the latter being a conceptual description of a
plausible future which underlines reasoning and uncer-
tainty [15]. In this paper, the term energy scenario refers
to the output of quantitative energy models of any math-
ematical kind. In energy economics, energy scenarios are
used to describe possible, plausible or probable future
energy system states [16]. The limitation of the future to
some defined input scenarios, also called storylines or
key assumptions, implies a subjective and decisive pre-
selection of futures scrutinised with an energy model.
This is a delicate process which should involve expert
knowledge and rigorous attention concerning plausibility
and reciprocal assumption impact [17]. The agreed as-
sumptions, model design and formulation, and the spe-
cific question to be answered by an energy model, form
the basis for the calculation of energy scenarios. So, en-
ergy scenarios should be understood for this paper as
the quantitative and interpretative outputs of mathemat-
ical energy models.
Typically, an energy scenario is accompanied with a

statement such as “if the assumptions hold, the cost-
effective [mutatis mutandis, e.g. high supply security, low-
carbon] pathway to an energy system with low carbon
emissions [mutatis mutandis, e.g. share of renewables] in
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2030 is energy scenario X”. Attention should be paid to
the disclaimer "if the assumptions hold". This makes any
energy scenario (the output of a given energy model) con-
ditional on the input assumptions. Many model-based
outlooks explicitly avoid terms like “forecast” being well
aware that energy scenarios hold uncertainty but avoid
specification, let alone quantification. For example the
ENTSO-E scenario outlook 2014–2030 speaks of four
“visions” explicating that “The four visions are based on
distinctively different assumptions, thus the actual future
evolution of parameters is expected to lie in-between.”
[18] Implicitly, this asserts that model outcomes depend
on the assumptions made. In the Word Energy Outlook
(WEO) of 2011, the International Energy Agency explicitly
distances from producing forecasts, but provides “a set of
internally consistent projections: none should be consid-
ered as a forecast” [19]. In spite of the uncertain nature of
these projections, these are designed by the authors for
real decision support. The WEO explicates in their self-
presentation that “the WEO projections are used by the
public and private sector as a framework on which they
can base their policy-making, planning and investment de-
cisions and to identify what needs to be done to arrive at a
supportable and sustainable energy future” [20]. I will call
these forms of uncertainty admittance a general dis-
claimer. Another example of the current standard un-
certainty treatment by BP, who provides an explicit
disclaimer, yet does not specify how uncertain results
are in their perception. “Forward-looking statements
involve risks and uncertainties because they relate to
events, and depend on circumstances, that will or may
occur in the future. Actual outcomes may differ de-
pending on a variety of factors […]” [21].
Evidentially if, as IEA states, such outlooks can be

used to base decisions on them, an accompanying expli-
cit uncertainty assessment should be beneficiary for re-
cipients. Given that, as explained by the BP disclaimer,
basically all relevant model inputs face uncertainty to an
unspecified extent, how should the recipient include that
in her decision-making process?
If an uncertainty assessment should be of value for a

recipient of an outlook or a study, it seemingly demands
more than a general disclaimer that things could turn
out to be different. Ideally, it would render uncertainty
associated with outcomes tangible and understandable,
cf. [1].
Uncertainty associated with energy models and their

results have received little attention in the literature.
Walker et al. have developed a definition framework, i.e.
the uncertainty matrix, used to identify uncertainty in
energy models according to location, nature and level
[22]. Van der Sluijs et al. developed the Numerical Unit
Spread Assessment Pedigree (NUSAP) method and ap-
plied the uncertainty evaluation to different models [23]

to produce a diagnostic diagram. The decisive role of as-
sumption value-ladenness is stressed by Kloprogge [24].
Refsgaard et al. have reviewed 14 uncertainty assessment
methods, including the two methods mentioned above.
They present suitable methods for uncertainty treatment
at various stages of the modelling process detailed for
different levels of ambition or available resources [25].
The NUSAP approach applied different methods: an ex-
pert elicitation workshop, a meta-level analysis of simi-
larities and differences in scenario results of six energy
models, and a sensitivity analysis based on Morris [26].
Expert elicitation for uncertainty quantification (or
qualification), in particular faces some challenges. The
often used Delphi method [27] suffers from inevitably
present psychological aspects, for example, question de-
sign, conflict aversion, status and competence presenta-
tion of an expert, majority opinion pressure, cf. [28], to
name just a few. The subjective character of such evalua-
tions entails some disadvantages of the method. An un-
certainty assessment should yield reproducible results,
irrespective of the individual expert questioned. But
given a different group of experts or different question-
naire design, an uncertainty assessment based on expert
elicitation could yield significantly different results.
An uncertainty assessment should provide a clear un-

derstanding how reliable a model result is. This under-
standing should not be conditional on the expertise of
the recipient, nor should it depend on the person(s)
assessing uncertainties. However, expert knowledge is an
important part of uncertainty assessment and should be
included, relativised by statistical facts and a reprodu-
cible computation method. The assessment should be
applicable to the different energy models with a suffi-
cient degree of individuality for each model, yet a com-
mon methodology applicable for different mathematical
energy model types. The presented method accommo-
dates all these aspects: BMA is a reproducible computa-
tion method, based on statistical facts which are
independent of psychological and subjective evaluation.
By means of prior probabilities, valuable expert know-
ledge can nonetheless be incorporated and is relativised
by statistical evidence. Applying the method to input
variables allows versatile employment regarding different
mathematical types of energy models. The result of the
method is an explicit quantitative uncertainty assess-
ment indicating reliability in well-known terms of
probability.
A typical energy model incorporates physical facts, for

example, stocks of electricity generation capacity within
system boundaries, storage capacities, electricity or gas
grid infrastructure information, car stock, and the like,
depending on the scope and aim of the energy model.
These facts (at least for the base year or calibration) face
uncertainty to a lesser extent than other assumptions. A
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more delicate issue are “facts” about the future. A typical
model would need such input to compute an optimal so-
lution or simulate consequences for a given time hori-
zon. For example, energy prices, population growth,
future efficiency standards, housing stocks, technology
fix and variable costs, etc. These assumptions are highly
influential for model results. Intuitively, the further in
the future the assumption applies, for example, technol-
ogy investment cost in 2030, the less certain can the
modeller be that such an assumption will hold given the
target system may develop in many different ways over
decades. However, quantitatively formulating assump-
tions for future developments is indispensable if a
model-based assessment is desired. Speaking somewhat
loosely and exaggerating, one might say, a model shows
what is assumed to be true—in a sophisticated and com-
plex way, beyond what thinking about the modelled
question would allow the average person—or even the
expert—comprehending in terms of inter-relations and
cross-impact. However, using a complex model does not
implicitly mean using a good model. Complex models
tend to rely on many assumptions. These assumptions
might or might not be true and are hence facing uncer-
tainty. Uncertainty over time of such assumptions means
that if a model has a modelling horizon,1 and model re-
sults are displayed as time series, the related uncertainty
of the results must increase. This is due to the facts that
model inherent simplifications and generalisations per-
form error propagation, and that assumptions regarding
mid- or long-term future are uncertain. The interactive,
reactive and non-deterministic nature of the world leads
to limited predictability of states of the target system in
the future. For example, a natural gas price assumption
is influenced by other processes in the target system
such as extraction rates, transportation infrastructure,
political stability of producing countries, and the like.
There might even be a time-lagged back loop, for, if the
natural gas price is high enough, alternative extraction
methods (aka unconventional gas) may become eco-
nomic, this in turn increases supply and this in turn
could lower the price.2 Such timely interrelated effects
may be put aside for now; however, it exemplifies that a
complex world demands for complex models. Given that
natural gas extraction is a process which has to be
planned and engineered, is contractually governed, and
relies on exhaustible sources, the assumption for the
next month may be less uncertain than an assumption
for 2040 where little planning and engineering invest-
ment have yet been communicated, contracts may not
yet exist, and, the location and development of possible
new gas fields is not foreseeable at the moment. BMA
for input variables allows an assessment of these rela-
tions, and via predictive densities, consistent storylines
can be developed. The approach does not analyse which

specific value for an assumption is more or less likely,
rather, it evaluates the uncertainty of relations in the tar-
get system represented in the energy model, whichever
value is used to design a storyline.
Another practice in modelling, which is sensible to un-

certainty, are ad hoc assumptions. These may, for ex-
ample, be bound restricting the solution space of a
Linear Program (LP) or elasticity of substitution assump-
tions in Computable Generalised Equilibrium (CGE)
models [29, 30]. Such assumptions are a modeller’s sub-
jective choice and decisively influence the model results.
This is not to say that these assumptions lack legitimacy;
however, model-embedded ad hoc assumptions seem
not to be as transparent as key assumptions which are
reported as scenarios, for example, the “New Policies
Scenario” of the International Energy Agency [19] in
contrast to the model-embedded ad hoc assumptions
[31]. Assumptions based on the modeller’s expert opin-
ion can be beneficiary in answering a research question.
However, if these assumptions are not transparent, the
possibility of unwarranted and uncertain model results
should be communicated.
This type of uncertainty is called assumption uncer-

tainty or, in Walker’s terms, input uncertainty and par-
ameter uncertainty. Other locations of uncertainty
analysed by Walker are context uncertainty which is ad-
dressed if Bayesian Model Averaging (BMA) for input
variables is carried out. What explicitly is not addressed
in this example of input variable uncertainty is model
uncertainty, i.e. uncertainty that is held conceptually in
the energy model (the mathematical formulation) and
model technical uncertainty (arising from the computer
implementation) [22]. This is for two reasons: model un-
certainty is a highly individual issue and can best be in-
vestigated for a specific model. The method discussed in
this paper aims to be a versatile assessment method that
can be applied to any energy model using input vari-
ables. Secondly, the respective (dis-)advantages of energy
model types are suspected to be known, for example, the
need for linearisation of constraints in Linear Programs,
or the potentially wrong default position in probabilistic
non-linear models, cf. [32]. It is upon the energy model-
ler to choose a suitable model for a given question. Evi-
dentially, other sources of uncertainty than input
uncertainty and parameter uncertainty which is investi-
gated in the presented paper are present. In response to
that fact, a lower bound of uncertainty is proposed. The
corresponding premise that needs to be accepted can be
formulated as follows.
Premise: The output of an energy model cannot be less

uncertain than the input to an energy model.
The premise captures the idea that an energy model is

not a tool which reduces uncertainty and could predict a
future with certainty based on uncertain assumptions
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about the target system. The relation of energy system as-
pects, the bearing of interrelated systems and the actual
values are uncertain. The idealisations and generalisations
in quantitative models cannot reduce uncertainty but in-
crease it as they are known to not represent the target sys-
tem isomorphic. Simplifying a highly complex reality is
the whole point of using a model. However, comparing
model results and reality, called empirical adequacy, is the
only way to determine whether the model is over simplify-
ing or missing relevant aspects. Actually, model output is
not only dependent on input variables but on the very for-
mulation of a specific model, and its version. The rele-
vance of model changes (structural, system constraints
and parameters) for model output is significant, cf. [33].
This indicates that a model—designed accordingly—may
generate any output. But model-specific empirical inad-
equacy and error propagation is not the focus of the pre-
sented case study. Rather, it is an assessment which is
independent of individual models, providing a tool to
evaluate input value uncertainty (even if the model could
represent reality). In other words, even a perfect model
(w.r.t. empirical adequacy) cannot provide certain results,
for it is uncertain which values the input variables will
take. This uncertainty is addressed, generally referring to
“relevant developments”, captured in story lines and sce-
nario formulation. The presented method provides a tool
for statistical analysis of such assumptions.
If this premise is accepted, an uncertainty assessment

of input variables of a specific energy model could yield
an evaluation of the form: uncertainty for input variable
Y is at least X%. One could argue that this is an unspe-
cific uncertainty assessment, but actually, it also ac-
counts for a type of uncertainty that can hardly be
addressed differently, viz. epistemic uncertainty.3 Al-
though assessment methods for epistemic uncertainty
have been proposed in other contexts [34], these
methods do not seem to be applicable in energy model-
ling. By epistemic uncertainties in the context of energy
models I mean a form of under-determinism or “not-
knowability” of decisive influences on the energy system.
Unfortunately, energy models have a rather poor history

of empirical adequacy (aka model fit) [35, 36]. For ex-
ample, most energy models cannot account for political
decisions, scientific cognition of other disciplines (relevant
for the energy system) or natural hazard consequences.
This implicitly means that any energy model has an em-
bedded assumption regarding a “business as usual”—-
environment for the energy system, and some influences
are simply unknown and not accounted for. This fact needs
to be addressed. But as anticipating or quantifying such in-
fluences seems impossible, a lower bound of uncertainty is
suggested, respecting that unknown influences might in-
crease deviation of model results and reality by more than
the assessed uncertainty and to an unspecifiable extent.

Methods
Probability assessment
Departing from the above stated premise that an energy
model output cannot be less uncertain than its input
and the fact that epistemic uncertainty must be
respected by a method, an uncertainty assessment in
probabilistic terms of input variables will be presented.
Input variables are specific for each energy model, for
example, the model documentation of the World Energy
Model (WEM) details the relevant input variables [31].
The idea is that input variables are dependent on in-

fluences. The assumed dependencies in the target system
are the basis for scenarios or storylines for energy
models, for example, the IEA states in their WEO 2015
executive summary “The process of adjustment in the
oil market is rarely a smooth one, but, in our central
scenario, the market rebalances at $80/bbl in 2020, with
further increases in price thereafter. […] A more pro-
longed period of lower oil prices cannot be ruled out.
We examine in a low oil price scenario what it would
take for this to happen—and what it would mean for the
entire energy sector if it did. The oil price in this sce-
nario remains close to $50/bbl until the end of this dec-
ade, before rising gradually back to $85/bbl in 2040.”
These scenarios are based on dependencies in the target
system, in particular: “This trajectory is based on as-
sumptions of lower near-term growth in the global econ-
omy; a more stable Middle East and a lasting switch in
OPEC production strategy in favour of securing a higher
share of the oil market (as well as a price that defends
the position of oil in the global energy mix); and more
resilient non-OPEC supply, notably from US tight oil.”
[37]. Following this argumentation, there should be stat-
istical evidence for the dependency of the oil price on
the global economy, Middle East and OPEC production,
and non-OPEC supply (the influences). The proposed
method examines this dependency in statistical terms,
that is, it allows an analysis whether the influences can
explain the value of an input variable. In this sense, the
context uncertainty in Walker et al.'s terms can be ad-
dressed. The question arises which influences should be
chosen to describe an input variable. These are in par-
ticular those, which form the argumentative basis for a
scenario, but the method allows for more. The BMA
method allows the inclusion of many potentially influen-
cing aspects of the target system, which are ranked ac-
cording to their explanatory power based on statistical
evidence. This is a distinct advantage w.r.t. classical stat-
istical analysis, in which the analyst chooses the explana-
tory variables. In classical statistical analysis, the risk of
choosing the wrong, too much or too less explanatory
variables (influences) is present. BMA addresses this
model uncertainty (note, that now the model that will be
used to describe the input variable is meant not the
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energy model that consequently uses these input vari-
ables) by evaluation and ranking of many different pos-
sible models explaining the data of the dependent
variable.
Equally, it is possible to assess parameter uncertainty

for a specific energy model. The influences on parameter
assumptions, for example, in some models (LPs in par-
ticular) efficiency standards of technologies are assumed
over the complete modelling horizon. These assump-
tions are sometimes (often not) accompanied with justi-
fications why these assumptions are reasonable, what
can be evaluated by the method. And also ad hoc as-
sumptions, as for example, bounds on shares of tech-
nologies and the like.
The process as presented in the case study can be de-

scribed in steps. First, the relevant input variables of an
energy model which should be assessed in terms of their
uncertainty are chosen.4 Secondly, data that potentially
could influence the dependent variable (i.e. the input
variable for the energy model) is gathered. Using BMA,
many potential influences can be included which are
suspected to impact the input variable. A model describ-
ing the relationship between the dependent and the ex-
planatory variables is chosen. This can be a multiple
linear regression or other models, depending on the in-
fluences and their bearing on the dependent variable.
Given many different influences are considered, it can
be difficult formulating a mathematical relationship
which is for all influences the best representation. One
might, as in this case study, choose a mathematical rela-
tion which represents whether, and by what order of
magnitude, the influence increases or decreases the
value of the dependent variable by a multiple linear re-
gression model. However, other mathematical formula-
tions are possible and may be more suitable, depending
on the input variable and the influences in question.
Thirdly, BMA provides the best performing model in
terms of its posterior model probability (PMP). Finally,
the probability that an input variable can be described
with the influences of highest posterior inclusion prob-
ability (PIP) is translated in uncertainty, specifically, a
lower bound of uncertainty.
In order to perform the last step, it is necessary to

provide a definition of uncertainty which departs from
probability. The following mathematical formulation is
derived from basic probability theory. However, the def-
inition I propose is novel in so far as it is used to inter-
pret uncertainty.

Theory: a definition of uncertainty
An uncertainty assessment should enable the recipient
of uncertain information to evaluate how reliable,
probable or likely an event is to happen or a statement
is true.

Definition: Uncertainty Ψ(A) equals the probability
P(A) that an event A might not occur, i.e.

Ψ Að Þ ¼ P AC
� �

:

The now presented uncertainty measure (Eq. 12) is
called Probabilistic Uncertainty. A set which represents
all possible outcomes of a random process is called sam-
ple space Ω. Let ℱ be a set of subsets (a collection of
events) of Ω, and an event A ∈ ℱ. Be ℱ a σ-algebra on
Ω, satisfying the properties

∅; Ω∈ℱ ð1Þ
A∈ℱ⇒AC∈ℱ ð2Þ
A1;A2;…;An∈ℱ⇒Un

i¼1Ai∈ℱ ð3Þ
Thus, the empty set (the impossible event) and the

sample space are elements of the σ-algebra ℱ, the comple-
ment set AC of any event A is an element of the σ-algebra
(AC is the case when A is not the case) and the σ-algebra
is closed under countable unions.5 Let P be a finitely
additive measure on the measurable space (Ω, ℱ), then P:
ℱ→ [0,1] with P(Ω) = 1 is a probability measure. The
probability space (Ω, ℱ, P) consists therefore of the sample
space containing all possible events, the σ-algebra ℱ, and
the probability measure P.6 In particular, let the axioms of
probability hold

∀A∈ℱ P Að Þ≥0 ð4Þ
P Ωð Þ ¼ 1 ð5Þ

P U∞
i¼1Ai

� � ¼
X∞

i¼1
P Aið Þ ð6Þ

if A1, A2 are pairwise disjoint.
Any event A, B, C,… that is an element of the

σ-algebra ℱ is non-negative, the probability of all events of
the sample space equals one, and probabilities of disjoint
events are additive. This means7 that for any events A and
B of the probability space (Ω, ℱ, P), the following holds

P Að Þ þ P AC
� � ¼ 1 ð7Þ

P ∅ð Þ ¼ 0 ð8Þ
If A⊆B; then PðB∖AÞ ¼ PðBÞ − PðAÞ and hence
PðAÞ≤PðBÞ ð9Þ

PðA∪BÞ ¼ PðAÞ þ PðBÞ−PðA∩BÞ ð10Þ
Let Ψ be a finitely additive measure on the measurable

space (Ω, ℱ) called probabilistic uncertainty measure,
such that Ψ: ℱ→ [0,1] with Ψ(Ω) = 0, Ψ(∅) = 1, and
Ψ(A) = P(AC). It follows from (7) that

P Að Þ þ P AC
� � ¼ 1
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P AC
� � ¼ 1 – P Að Þ which is ð11Þ
Ψ Að Þ ¼ 1– P Að Þ ð12Þ

What this means is that the associated uncertainty of
an event A equals the probability that A might not occur,
hence the complementary set of events in Ω. For ex-
ample, if an unfair coin is tossed that yields heads (H) in
7 out of 10 tosses on average, the uncertainty of H is
0.3. Note that the thusly defined uncertainty refers to
the event’s uncertainty of occurring. That is, if an event
has a low probability, its associated uncertainty is high
and vice versa.
This simple definition has many advantages. For the

discussion here, most relevant is that it is an intuitively
acceptable interpretation of uncertainty as the probabil-
ity of all alternative events in the sample space. Sec-
ondly, it is easily derivable from the well-established
probability theory.
The following explication for the case study is based

on Zeugner [38]. In the BMA of the case study, the prior
probability concerns the intuition of the uncertainty ana-
lyst how probable she believes a model Mγ might be be-
fore looking at the data. BMA uses a weighted average
of all possible models from the potential explanatory
variables (which we called influences and both terms will
be used interchangeably). The weights for the averaging
are defined via the posterior model probabilities that
arise from Bayes’ Theorem. The chosen model formula-
tion is linear with a typical input variable y to energy
models as dependent variable (natural gas price), αγ a
constant for a model γ, βγ the coefficients for a model γ,
ε a normal IID error term with variance σ2, and: X a
matrix of K potential explanatory variables (influences)
with some chosen variables for a model γ. As the uncer-
tainty analyst does not know which influences are rele-
vant for modelling the dependent variable, the sample
space Ω contains 2K models of the general form

y ¼ αγ þ βγXγ þ ε ð13Þ

Then Bayes’ Theorem for the posterior model prob-
ability for the weights Zeugner [38] is given by

p Mγ jy; X
� � ¼ p yjMγ; Xð Þp Mγð Þ

p yjXð Þ
¼ p yjMγ; Xð Þp Mγð ÞP2K

s¼1p yjMs;Xð Þp Msð Þ
ð14Þ

The results of the BMA are the PMPs for statistical
models representing the input variables of energy
models in terms of the influences bearing on them.
The relevance of individual influences can be analysed
in terms of their individual PIP. Also, a predictive
density can be calculated which would allow a

coherent and transparent assumption generating
process, taking into account statistical data of relevant
influences. For example, profitability of natural gas
production is often an implicit assumption which can
be analysed in terms of its relevance (PIP) for the nat-
ural gas price.8 The choice of key assumptions for sce-
narios could thence depart explicitly from relevant
influences rather than choosing the value of an input
variable and implicitly assuming context facts that
might not only be unknown (or not communicated)
but also—in the worst case—contradictory.
Such an assessment allows analysing context uncer-

tainty, parameter uncertainty and input variable uncer-
tainty in Walker et al.’s terms. By Eq. 12, the uncertainty
can be quantified using the calculated PMP of a given
model Mγ as assumption probability, starting with (12)
and substituting (14) leading to (15).

Ψ Að Þ ¼ 1−P Að Þ ¼
Ψ Mγ

� � ¼ 1−p Mγ jy; X
� � ¼

Ψ Mγ

� � ¼ 1−PMPMγ ð15Þ
Similarly, the uncertainty of individual influences in

the context of sample space Ω can be assessed by using
PIPk instead of PMPMγ. With Ψ(•) defined as a measure
on [0,1] uncertainty can be expressed as a percentage.
This unambiguous representation has distinctive advan-
tages with respect to qualitative uncertainty assessments.
The aim of this section was introducing a notion of

uncertainty that is probability based, called Probabilistic
Uncertainty. The notion has the benefit of unambiguous
uncertainty quantification, using the well-established
mathematical framework of probability and measure
theory.

Case study: uncertainty of a natural gas price assumption
The probability assessment for this example of an en-
ergy model input variable, the natural gas price, is
based on a set of data with 18 variables and 26 observa-
tions.9 Detailed information on the data used, refer-
ences and units before log transformation can be found
in the Appendix. However, the aim of this case study is
not deriving a general statement regarding the uncer-
tainty of a natural gas price assumption. Rather it is an
example how the proposed approach is applied. A
meaningful statement can be obtained in the context of
a specific energy model, its time resolution and geo-
graphic scope which would have to be aligned with data
used for BMA. This case study has no specific model
application.
The subset of possible models, the model space Ω, to

choose from, is 2k = 262,144 potential models. First, an
adequate model that respects the body of evidence
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must be chosen. To this end, BMA is applied [38–40].
The method yields posterior inclusion probabilities
(PIP) for all candidate explanatory variables, i.e. influ-
ences10 (aka regressors). The PIPs of the regressors can
then be converted to an uncertainty assessment of indi-
vidual influences on the dependent variable (the input
variable to an energy model) by application of formula
(15). This yields insight which influences within the
best performing model in terms of posterior model
probability (PMP) are more uncertain to explain the
data than others. The following results are computed
with R statistical software. For a discussion and intro-
duction to BMA see [39–42]. The results follow from
the data set detailed in the Appendix, a burn-in of
50,000 with 100,000 iterations, the g prior is set to
g = max (N;K2), that is a mechanism such that pos-
terior model probabilities (PMP) asymptotically ei-
ther behave like the Bayesian information criterion (with
g =N) or the risk inflation criterion (g = K2).11 Generally, a
small hyperparameter g reflects low prior coefficient vari-
ance and implies a strong initial belief that the coefficients
are 0. In contrast, as g→ ∞ , the coefficient estimator ap-
proaches the ordinary least squares OLS estimator.
Due to the large number of potential variable combi-

nations, a Markov Chain Monte Carlo (MCMC) sampler
is used that relies on a Metropolis-Hastings algorithm to
analyse the model space, the manner of model choice is
a birth-death-sampler.12 Using a MCMC sampler facili-
tates the inclusion of many potential influences only at
the expense of computation time. In Table 1, the results
are detailed, sorted by posterior inclusion probability
(PIP) of the regressors. For a description of the regres-
sors, i.e. the influences, the Appendix can be consulted.
In the first column, the influences are named. In the sec-
ond column, the posterior inclusion probability is dis-
played. The PIP is the sum of posterior model
probability (PMP) for all models wherein the influence
was included. One can imagine the PIP as the quality of
a variable to explain the data measured with respect to
all other possible variables which were chosen by the
birth-death-sampler of the Metropolis-Hastings algo-
rithm. The quality is good, when the actual data point
which has to be explained (i.e. the dependent variable’s
value in a given year) can be “calculated” by the model
with little deviation and hence small residuals. The pos-
terior mean in the third column provides further infor-
mation of the quality of the variable by averaging over
all models, including models wherein the variable was
omitted. The posterior standard deviation “Post SD” in
the fourth column indicates how much dispersion the
variable has, also displayed in Fig. 3. The conditional
posterior sign “Cond.Pos.Sign” in the fifth column is the
“sign certainty” as Zeugner names it, meaning that in
some models, the variable may be included with a

positive and in some with a negative sign, and the condi-
tional posterior sign indicates posterior probability of a
positive coefficient expected value, conditional on inclu-
sion. That is, the fifth column displays the probability
that the expected value of the coefficient is positive
based on all cases (i.e. models), the variable was
included.
The “Cond.Pos. Sign” is also indicated in Fig. 1. Red

colour indicates a negative coefficient, blue colour indi-
cates a positive coefficient and white colour indicates
non-inclusion, i.e. a zero coefficient. As the first col-
umn of Table 1 depicts (the PIP), 99.2 % of all models
in the model space include US Natural Gas Consump-
tion (USCONNG) as an explanatory variable for the
dependent variable Natural Gas Price, which is illus-
trated in Fig. 1 as high inclusion probability, that is, the
variable was included in most models, illustrated by the
red colour across almost all probabilities (from left to
right). The cumulative model probability axis depicted
against the explanatory variables (y-axis) in Fig. 1 can
be interpreted as the mass of models (how many
models) in which the variable was included. The first
section of the x-axis (on the left side, the largest section
of the x-axis) shows the best model, that is the model
with highest PMP mass and the variables of which this
model is comprised (on the y-axis). The corresponding
model can be seen in Table 3: “Model 1”. In other
words, this graph, which is based on the best 2000

Table 1 Bayesian Model Averaging summary (rounded)

PIP Post mean Post SD Cond.Pos.Sign

USCONNG 0.99 −0.53 0.13 0

WTI_PRICE 0.99 0.09 0.03 1

ELC 0.97 −3.34 0.93 0

TRA 0.95 −0.88 0.30 0.00041

GDP 0.95 0.82 0.30 0.997

RENEW 0.51 0.13 0.15 1

CRUDE_PRICE 0.31 −0.01 0.03 0.033

NGRENT 0.25 −0.01 0.02 0.03

OILRENT 0.17 −0.01 0.06 0.22

INDPROD 0.15 −0.01 0.03 0.03

IMPTOT 0.14 −0.01 0.05 0.24

DEPL 0.13 −0.02 0.11 0.09

INDVAL 0.12 −0.01 0.06 0.09

NRGPROD 0.10 0.01 0.10 0.75

IMPP_DE 0.08 −0.002 0.02 0.37

GASELC 0.07 0.003 0.03 0.74

OILELC 0.07 −0.005 0.08 0.28

HDD 0.06 −0.0001 0.01 0.38
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models, shows that among the best 2000 models, the
models which included the variables indicated in red or
blue comprise 11 % of all models (the model mass).
The abscissa shows the 2000 best models, scaled by
their cumulated PMP. The second section, roughly 8 %
of model mass (between 0.11 and 0.19) on the abscissa
shows a model which also includes one other influence,
in Table 3 this model is named “Model 2”. Alike one
can retrieve all models of Table 3 in this graph.
In Fig. 2, model size distribution and the posterior

model probabilities are shown. Model size distribution
represents the number of adequate regressors depicted
against the prior assumption, that was “uniform”, i.e.
the prior expected model size implicitly used in the
model definition. With 2K possible variable combinations, a
uniform model prior means a common prior model prob-
ability of p(Model) = 2−K. This implies a prior expected

model size of
XK

k¼0
K
k k Þk2

−K ¼ K=2 ¼ 18=2 ¼ 9
�

. With

a beta-binomial specification and prior model size of K/2,
the model prior would be completely flat over the model
sizes (x-axis of first graph). For a discussion of prior influ-
ence in an econometric context see Eicher [43], or Ley and
Steel section 3 [44].
Posterior Model Probabilities of the best performing

2000 models are displayed on the ordinate of the second
graph. Analytical Posterior Model Probabilities are dis-
played in the red line. The blue line indicates the
MCMC iteration counts.

The graphical analysis in combination with the model
summary (Table 2) indicates that convergence was
achieved to an acceptable extent, namely 0.9986. “Corr
PMP” defines the correlation between iteration counts
and analytical posterior model probabilities for the 2000
bestmodels.
In Table 2, further model and simulation statistics as

well as input are shown. The BRIC g-prior was ex-
plained before. Large shrinkage statistics can be used to
analyse the importance of different model specific g-
priors. The results of this computation are probability
densities for regression coefficients and posterior model
probabilities for the models. In Table 3, the best five
models in terms of PMP and the coefficient estimates
are displayed.
The exact PMP are analytical values, MCMC are

simulated values. The PMP is proportional to the mar-
ginal likelihood of the respective model, i.e. the prob-
ability of the data given the model, times the prior
model probability. The best model has a PMP of ca.
11 %. In Fig. 3, the marginal distribution density of the
used variables coefficients is depicted. The numerical
coefficient estimators correspond with the coefficient
values in Table 3. The integral of the densities sums
up to the analytical PIP of the regressors, as reported
in Table 1.
In order to understand how the distributions are gen-

erated, Fig. 4 illustrates the expected values of the best
2000 models generated by the MCMC sampler. These
expected values produce the density of the coefficient of

Fig. 1 Model inclusion of explanatory variables based on best 2000 models: Red colour indicates a negative coefficient, blue colour indicates a
positive coefficient and white colour indicates non-inclusion. The abscissa shows the 2000 best models, scaled by their cumulated PMP. On the
ordinate, the influences ranked by their inclusion are shown
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the variable CRUDE_PRICE. In other words, every verti-
cal grey line corresponds to the expected value of a
model (x-axis); the density describes how many models
indicate this value (y-axis). The conditional expected
value of the variable which is depicted in red (cond. EV)
is the analytical value and Cond. EV MCMC is the

sampled expected value. Due to reasonable convergence
statistics as depicted in Table 2, the values are rather
close to one another.
Although the interpretation of the results is not the

main focus of this case study, some explanatory re-
marks are provided as an example for other

Fig. 2 Posterior Model Size Distribution and Posterior Model Probabilities: model size reflects the number of variables suggested by prior and
posterior distribution of potential variables (mean 7.003). Posterior model probabilities of the best performing 2000 models: blue indicates the
sampled model probabilities; in red, the exact probabilities (analytical) are shown (Corr 0.9986)

Table 2 Summary of BMA

Mean no. regressors Draws Burn-ins Time No. models visited

“7.0030” “1e + 05” “50,000” “36.3791 s” “29,835”

Modelspace 2^K % visited % top models Corr PMP No. obs.

“262144” “11” “100” “0.9986” “26”

Model Prior g-Prior Shrinkage-Stats

“uniform/9” “BRIC” “Av = 0.9969”

Culka Energy, Sustainability and Society  (2016) 6:7 Page 10 of 24



uncertainty assessments with BMA and Probabilistic
Uncertainty. Applied to a specific model, these would
indeed refer to the reasoning of assumptions, as dis-
cussed in the background section. The posterior inclu-
sion probability (PIP) of individual influences depends
on the explanatory power of the variable over the
whole model space. “WTI Price” with almost 99 %
posterior inclusion probability can be interpreted as a
reflection of the linkage to oil price developments in
natural gas prices. The highest PIP is found in the
variable “USCONNG” which is the US Natural Gas
consumption,13 what is due to the fact that the re-
sponse variable, the natural gas price, is the import
price for Germany. If the analysed natural gas price
were the end consumer price for households or indus-
try, other dependencies could become transparent.
Hence, an appropriate choice of the statistical repre-
sentation of influences, including considerations of
data time resolution and geographical scope of the
data is necessary to allow for BMA finding relevant in-
fluences for a given energy model. Intuitively, the re-
gression model should meet the needs of the
subsequently used energy economic model in terms of
spatial and time resolution, inclusion of regional vari-
ables and the use of a high number of observations is

recommended. For example, if an energy model has a
time resolution of 12 time slices a year (summer/win-
ter/spring/fall/day/night/peak), the appropriate time
resolution could be monthly data, or even daily data if
available.
The posterior model probability (PMP) of ca. 11 %

seems to reflect a low capacity of the model to repre-
sent the observed data. BMA approaches in other
contexts should relativize that finding. The example
presented by Fernandez et al. for an econometric con-
text reports a PMP of 0.3 [45]. The much cited paper
of Hoeting, stressing advantages of BMA with respect
to classical statistical methods, uses a medical context
and reports a PMP of 0.17 in a dataset on primary
biliary cirrhosis14 [39]. A PMP of 0.11 for the case
study seems thus, even though being low, not un-
acceptable. What this means in terms of uncertainty
is discussed in the next section.
The BMA calculation method of PMP for a statis-

tical model is not new. I chose the method for several
reasons. First, it is an approach with solid mathemat-
ical formulation as cited. Second, it resolves one of
the main problems when dealing with an interrelated
target system, as energy models do: what influences
the exogenous variable (the input variable) of an en-
ergy model. Using the BMA method, the modeller is
provided a statistical tool to assess the significance of
an influence based on data, and can argue with statis-
tical relevance in contrast to pure intuition. This is
not to say that intuition can or should not be applied
in energy modelling, rather, it can be supplemented
by data.

From probability to uncertainty
Communicating an explicit uncertainty assessment,
rather than general disclaimers as is current practice,
seems necessary because most energy scenarios are
presented in great detail in terms of numbers and
figures and may thereby suggest a certainty which is
possibly not justified. The presented definition of
uncertainty departing from probability provides a
tool which corresponds to a given energy models re-
sults’ in terms of its input variables, its geographical
coverage and time resolution. Yet, the method is ap-
plicable to very different kinds of energy models (by
adjustment of input variables, and potential influ-
ences) and is thus also flexible. In the next sections,
the application is exemplified with the theoretical
concept of the previous sections and the BMA
calculation.
The posterior model probability (PMP) can be used to

derive the structural, model dependent uncertainty.
PMPs are generated with respect to all variables

Table 3 Inclusion of variables (coefficient estimate) and
posterior model probability for the best five models (rounded)

Model 1 Model 2 Model 3 Model 4 Model 5

INDPROD

DEPL

TRA −0.72 −0.82 −1.17 −0.88 −0.96

RENEW 0.26 0.23 0.23 0.19

ELC −3.03 −3.25 −3.96 −3.30 −3.47

GASELC

OILELC

IMPTOT

NRGPROD

GDP 0.73 0.68 0.99 0.75 0.84

INDVAL

NGRENT −0.05 −0.03

OILRENT −0.08

USCONNG −0.54 −0.50 −0.53 −0.50 −0.52

WTI_PRICE 0.07 0.11 0.08 0.08 0.07

CRUDE_PRICE -0.04

IMPP_DE

HDD

PMP (exact) 0.1113 0.0780 0.0543 0.0365 0.0329

PMP (MCMC) 0.1109 0.0751 0.0527 0.0356 0.0324
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(influences) of a given model. Applying Eqs. 12, 14 and
15, we derive uncertainty as follows.

Ψ Að Þ ¼ 1−P Að Þ ¼
Ψ Mγ

� � ¼ 1−p Mγ jy; X
� � ¼

Ψ Mγ

� � ¼ 1−PMPMγ

with Model (M) and γ = {1,2,3,4,5} the five best perform-
ing models
BMA yields that the model with the highest PMP

(thus the lowest uncertainty) includes six variables,

Fig. 3 Marginal density distributions of coefficient estimates of the six most relevant explanatory variables: the blue line represents the marginal
density; conditional expected values (Cond.EV) are displayed in red solid line, the median in green solid line. The red dotted lines represent the
double conditional standard deviation (2× Cond. SD)

Fig. 4 Marginal density and expected values of models (EV Models) for
the variable CRUDE_PRICE with a posterior inclusion probability (PIP) of
ca. 30 %. The red line indicates the analytical conditional expected value
(Cond. EV), the blue line indicates the sampled conditional expected
value (Cond. EV (MCMC))
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hence, k = 6. In Tables 4 and 5, the results as percent-
ages are presented. The uncertainty is calculated
straight forwardly from the PMP, the probability speci-
fying the explanatory power of the model (the extent to
which the influences can explain the dependent vari-
able statistically). The model uncertainty of model 1 of
approx. 89 % is the uncertainty of the model represent-
ing the natural gas price. If model 1 was chosen to rep-
resent the natural gas price, the variables would have
individual uncertainties of approx. 11 % on average.
The individual uncertainties allow an assessment of the
explanatory variables and may help to choose the
model of lowest uncertainty, or, to consciously include
influences with limited explanatory power due to other

considerations.15 To illustrate this, Table 5 depicts
model 2, the second-best model in terms of PMP that
includes seven of the initial 17 variables. This model
choice yields an uncertainty of influences of approxi-
mately 19 % on average and a corresponding model un-
certainty of ca. 92 %.
Posterior inclusion probabilities (PIPs) are used to de-

rive uncertainty of individual explanatory variables, that
is, influences. By means of BMA, it becomes clear which
variables contribute explanatory power to a model in
terms of increased PMP. Applying formula (12) yields
the uncertainty of individual influences, hereby taking
the inclusion probability the variable k (influence) PIPk
has. That is,

Ψ Að Þ ¼ 1− P Að Þ ¼ 1–PIPk

Assuming that every variable is supposed to ex-
plain the dependent variable with low uncertainty, it
follows that variables which perform poorly in terms
of explanatory power (i.e. low PIP) should be ex-
cluded. However, it may be the case that an influ-
ence should be included in an analysis in spite of its
low PIP. By individual uncertainties it becomes
transparent at what “cost” such an inclusion comes.
The results show that an inclusion of variables

which are of little explanatory value to the model in-
crease uncertainty. This uncertainty is captured in
the lower PMP. In Table 4, the uncertainty assess-
ment for model 1 (cf. Table 3) is depicted. The
individual uncertainties, (i.e. the uncertainty of influ-
ences) yield uncertainties between less than 1 % and
almost 50 %. This percentage quantifies to what ex-
tent the variable is uncertain in its individual contri-
bution to explaining the dependent variable, the
natural gas price in the sample space Ω. This is not
to say that these variables in general have the calcu-
lated individual uncertainty. The posterior inclusion
probability yielding the individual uncertainty quanti-
fies in how many cases of the Monte Carlo simula-
tion of the sample space Ω this variable contributed
to an increased posterior model probability (PMP).
Within that model, the individual uncertainties
further specify the uncertainty whether a specific in-
fluence contributes to explaining the data of the
dependent variable.
Please note that one can use any statistical data

suspected to influence the input variable of an en-
ergy model. I argue that the assumption is not well
justified if the probability of these influences explain-
ing the input variable is low and, consequently, its
uncertainty is high. For example, if a natural gas
price assumption in a fictive energy model (with a
scope adequate to the data used for this BMA

Table 4 Individual uncertainties of variables (influences) and
model uncertainty for model 1 (cf.Table 3) with n = 6

Model 1 M1

Variable k PIP Individual uncertainty n

USCONNG 99.24 % 0.76 % 1

WTI_PRICE 98.62 % 1.38 % 2

ELC 97.07 % 2.94 % 3

TRA 95.46 % 4.55 % 4

GDP 95.20 % 4.80 % 5

RENEW 50.83 % 49.17 % 6

Averaged uncertainty

Xk¼n

k¼1
1−PIPkð Þ

n 10.60 %

PMPM1 Model uncertainty

11.13 %

Model uncertainty Ψ(M1) = 1 − PMPM1 100 % − 11.13 % = 88.87 %

Table 5 Individual Uncertainties of variables (influences) and
model uncertainty for model 2 (cf.Table 3) with n = 7

Model 2 M2

Variable k PIP Individual uncertainty n

USCONNG 99.24 % 0.76 % 1

WTI_PRICE 98.62 % 1.38 % 2

ELC 97.07 % 2.94 % 3

TRA 95.46 % 4.55 % 4

GDP 95.20 % 4.80 % 5

RENEW 50.83 % 49.17 % 6

CRUDE_PRICE 30.69 % 69.31 % 7

Averaged uncertainty

Xk¼n

k¼1
1−PIPkð Þ
n 18.99 %

PMPM2 Model uncertainty

7.8 %

Model uncertainty Ψ(M2) = 1 − PMPM2 100 % − 7.8 % = 92.2 %
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calculation) were justified referring to developments
in US natural gas consumption (USCONNG), oil
prices (WTI_PRICE), electricity consumption (ELC),
road sector energy consumption (TRA), GDP, and
combustible renewables and waste (RENEW)—model
1—than the statistical uncertainty that these develop-
ments impact the assumption would be 89 %. This
renders transparent whether assumptions are well
justified on statistical grounds and provides an expli-
cit assessment for recipients of energy model results.

From model to prediction
BMA densities can not only be applied for inference but
also for a prediction based on historical data. The
Bayesian regression can be used to calculate predictive
densities, similarly to the coefficient densities. Predict-
ive quality can be used to investigate how well the
model performs, given real data are available. For the
present exercise, the same BMA parameters as de-
scribed above are used, with 1e + 05 draws of the
MCMC and a burn-in of 5e + 04. The 26 observations
of the dataset are split in order to predict the last two
observations, i.e. the natural gas price in 2008 and
2009.16 For a detailed analysis of the predictive per-
formance see Chua et al. [46], for a prediction exercise
with dynamic factor models [47].
In Fig. 5, the predictive density and the real value

of the natural gas price for observation 25 (2008)
are depicted. Response variable on the abscissa is the
natural gas price which was called dependent vari-
able and is the input variable to an energy model.
The predictive density on the ordinate shows
where—with respect to the BMA model chosen—-
natural gas price assumption should be settled given

the influences. The predictions underestimate the
natural gas price cf. Table 6. A detailed analysis
could explain whether the two real values are out-
liers. The associated uncertainty for the model (cf.
Table 4) already indicates that prediction results can
be expected to be rather poor.
This is a notably coherent approach when key as-

sumptions are to be chosen for input variables in
quantitative terms. When defining storylines for sce-
narios, the need for quantitative assumptions arises.
Using predictive densities for input variables can be
employed to find the numerical values for assumptions
based on statistical data. Not only become the implicit
assumptions about the variable context in the target
system explicit (and can be communicated to recipi-
ents), but also a value for the assumption that respects
past observations can be retrieved. Valuable informa-
tion of the predictive density are the form (well-
shaped), the standard errors (0.36 for 2008 and 0.319
for 2009) and the expected value that could be used to
formulate a statement of the form: “With an uncer-
tainty of at least 89 %, the natural gas price lies be-
tween 11.44 and 9.97 US dollars per million Btu. This
estimation is based on six influences on the Natural
gas price over a period of 24 years.”

From uncertainty of input variables to uncertainty of
energy model results
The assessed uncertainty of input variables to energy
models can subsequently be used to formulate a lower
bound of the associated uncertainty of energy model re-
sults, under the introduced premise that the output of
an energy model cannot be less uncertain than the
input.

ΨEnergy Model Output ≥ ΨInput Variable ð16Þ

A statement of the form: “Given the input vari-
ables used in this energy model, the results and fore-
cast statements from it are uncertain by at least
89 %. Relevant influences on the input variables
which can be analysed statistically indicate this un-
certainty.17” The statement could be further refined
for specific input variables and energy model results
which can be appointed to these inputs. In general,
the least certain input variable should determine the

Fig. 5 Expected value and predictive density: The predicted density
of the natural gas price (response variable) in predicted observation
25 (2009) is shown. The real natural gas price (realized y) is
represented by the black dotted line and double standard errors (2×
Std. Errs) indicated as red dotted line of the expected value (exp.
value). The expected value based on BMA is shown as red solid line

Table 6 Prediction of last two observations of the data set

Observation 25 26

Expected value 10.71 7.27

Real value 11.56 8.52

Standard error 0.37 0.32
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uncertainty statements. In particular, if decision sup-
port is aspired and explicit recommendations are
formulated, recommended measures should include
an uncertainty assessment for relevant variables con-
cerning the measure.
It seems necessary to clarify that such an uncer-

tainty assessment should not be perceived as tool to
attack the credence of energy model results. Quite
contrarily, quantifying uncertainty should render
model results more realistic in the light of a con-
stantly changing, interrelated and non-deterministic
target system. Any other methodology of decision
support for mid- and long-term future choices sup-
posedly will have comparable difficulties anticipating
developments. Even with (very) high associated un-
certainty, energy models can be of (relativised) value
in decision support after all.
If model-based statements, projections and recom-

mendations are used in policy advice, it is necessary
to accompany these statements with an indication of
how dependable they are. Transparency in the model-
ling process and evaluation by recipients would be
improved, if energy model results were communicated
with their associated uncertainty (Eq. 15), context de-
pendency (influences deemed relevant), and explicit
assumptions (numeric assumptions of influences for
prediction).
The aim of the case study is to exemplify how a

quantitative assessment with the BMA method and
Probabilistic Uncertainty for input variables to en-
ergy models could work. The presented modelling
choices are not meant to be a unique solution; ra-
ther, the approach could be developed along these
lines. Software solutions other than R could be
applied.

Results
In summarising the findings of the case study, the
main observation is that by applying Probabilistic
Uncertainty and BMA method, a quantitative assess-
ment of uncertainty in terms of input, parameter,
and context uncertainty is possible. The embedded
nature of input variables in other systems and be-
yond energy model boundaries is referred to as “con-
text” and can be analysed by suitable choice of
potential explanatory variables, called influences.
Among the small database used for this case study,
significant influences on the natural gas price are
consumption in the USA, crude oil price, electricity
power consumption, road sector energy consump-
tion, gross domestic product and the share of com-
bustible renewables and waste in total energy
consumption.

The results suggest that the natural gas price as an
input variable holds an uncertainty of at least 89 %,
given the data used. Clearly, as this case study was
not designed for a specific energy model, these find-
ings cannot be applied to an energy model. For an
application to a specific energy model, the regional
scope, time resolution and sectorial (dis-)aggregation
of influences must be chosen accordingly. It is im-
portant to note that—as with all statistical analy-
ses—long observation periods and reliable data
sources increase the quality of the assessment, as it
reflects reality more accurately. This paper is not fo-
cussed on the interpretation of results but rather on
a presentation of the practical aspects of the
method. The case study has an exemplifying charac-
ter and could be used as a reference for an uncer-
tainty assessment with suitable data for a specific
energy model.
However, based on the case study, some general

analyses can be formulated. It seems that at least
some input variables to energy models are highly
uncertain with respect to influences bearing on
them. Those influences which can be estimated by
statistical methods seemingly explain (at least
some) input variables of energy models with little
probability. The conjecture is that resorting to gen-
eral disclaimers, as it is common practice, does not
reflect the high uncertainty that is associated with
individual energy model results. The presented ap-
proach could provide an energy model specific, ex-
plicit and understandable uncertainty assessment
which could accompany energy scenarios and ren-
der associated uncertainties tangible for the
recipients.

Discussion
According to Walker et al. statistical uncertainty is
the least ignorant of all uncertainties involved in
models. It thus seems reasonable to use statistical
data for uncertainty assessments. However, subjective
expert knowledge should be included and the method
can accommodate this by prior probabilities.
Statistical data dependence of the approach clearly

limits its applicability if data are scarce or not avail-
able. Assuming that many influential input variables
to energy models are well studied and observed,
such as gross domestic product, population growth
and the like, the approach should at least be dis-
cussed for those variables. The problem of statistical
data correlation is present, and is illustrated in the
annex. Gathering statistical data of influences can
be a significant amount of work. The question
arises if this work is justified. I think that it is in-
sofar justified, as energy model results aim to be
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used in decision support, as presented, for example,
the IEA states this in their self-presentation [20]. It
seems reasonable and good scientific practice pro-
viding an uncertainty assessment if energy scenarios
are to be the basis of policy-making, planning and
investment decisions. Recipients may hold an unjus-
tified confidence in “projections” or scenarios sug-
gest by studies, if uncertainties are not analysed in
detail. One key argument of energy models is that
if all assumptions hold, the development would be
as presented in the energy scenario. The proposed
approach can render transparent whether statistical
evidence is lacking for this argument. First, it is
highly unlikely that all assumptions hold, given
there can be hundreds in an energy model. Second,
even if all assumptions hold, the method potentially
proves that for at least some assumptions (the
assessed input variables), the assumed cause-effect-
relations are statistically highly uncertain. If not, the
better, for energy model results would be affiliated
with an uncertainty assessment proving its reliability
statistically. To give an example, the specific as-
sumption of the input variable “natural gas price”
can be justified with developments in production
and consumption patterns (the influences), yet given
historical data, it may prove that these develop-
ments did not explain the value. If it can be justi-
fied by the influences, the uncertainty assessment
provides statistical evidence.
Another limiting aspect if it comes to large and

complex models, it is the parametric nature of the
proposed uncertainty assessment. An intelligent
choice of input variables which are analysed seems
necessary, given that large models employ thousands
of assumptions. This could be done in several ways.
For one, the most influential input variables could
be chosen, possibly determined by a sensitivity ana-
lysis. This approach proved successful in the NUSAP
method [23]. Or, if tracking of input variables across
the energy model processing is possible, the number
of variables that are assessed could be limited. Yet
another possibility departs from model-based recom-
mendations, which should be based on a specific
model result, and that result should be evaluated
with respect to its uncertainty. In other words, if a
model-based energy scenario is publicly presented, it
should be accompanied with an uncertainty assess-
ment for the variables which are the basis for rec-
ommendations. Typically, these would be the
exogenous variables presented in the storylines, or
definitions of scenarios, as for example, the numer-
ical key assumptions in the “New policies scenario”
in the World Energy Outlook by the IEA [37]. It is
possible that some input variables are less uncertain

than others, in which case, the most uncertain input
variable should provide the lower bound (with refer-
ence to the premise that output cannot be less un-
certain than input to the energy model). It is not
claimed that the presented example of an input vari-
able (the natural gas price assumption) is the most
important assumption of an energy system model. It
is chosen for it is a typical assumption which is de-
cisive for energy model results, in particular, if an
optimisation model is used with an economic ration-
ale, as are other price and cost assumptions, be it of
fuels or technologies. The uncertainty assessment of
input variables is indeed work, statistical work and
computational work. However, if one aspires an un-
certainty quantification (rather than a general dis-
claimer) with a solid method, it cannot be achieved
through one assessment for an energy model, neither
quantitatively nor qualitatively (the number of expert
elicitations in qualitative assessments may render
proof ). Also, it would not do justice to highly de-
tailed energy models, which might well profit from
the possibility to analyse specific input variables in
terms of their uncertainty.
Another legitimate criticism is that the mathem-

atical formulation for the BMA analysis may not
be suitable. Indeed, it is very likely that a multiple
linear regression, or any other mathematical rela-
tionship (quadratic or polynomial regression, or
other non-linear functions) for that matter, does
not depict the bearing of influences on the
dependent variable realistically. But neither do en-
ergy models represent the bearing of target system
aspects in a realistic way. Hence, if one is willing
to accept that the idealising mathematical formula-
tion of an energy model18 can have any signifi-
cance, one would consequently accept that the
mathematical formulation of the proposed uncer-
tainty assessment can have significance. If not, the
uncertainty assessment is obsolete for such a per-
son would not accord any significance to energy
model results anyway. However, if the energy
model results are granted in any credibility by a
recipient, the person should be provided an assess-
ment of that credibility in adequate terms. I do
not claim that a multiple linear regression is the
best representation for all assessments, but for
most For exceptional cases it is possible to adapt
the functional relation between a dependent vari-
able (the input variable to the energy model) and
the influences deemed relevant. Indeed, the func-
tional relation needs to be evaluated for a specific
energy model input and relevant data. I, however,
do claim that effort should be made to find a
functional relation (linear or non-linear), for if
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there is none, it is questionable how the energy
models which themselves assume functional rela-
tions can be justified. The presented approach pro-
vides a quantitative explicit tool that is adjustable
for different energy model types (their input vari-
ables and influences bearing on them), and flexible
in the definition of the functional mathematical re-
lation of influences on an input variable.
The computational effort for the presented case

study was reasonable, taking approx. 10-min calcu-
lation time with the used software. All graphs are
standard functionalities of the R BMS package.
Data collection and preparation is indeed more
time consuming. It is suspected that energy model-
lers would already dispose of much relevant statis-
tical data for calibration purposes from reliable
sources.
The method, as any statistical method, assesses

probabilities based on past events. This implies
that the expectation and focus of future develop-
ments is in a sense limited. However, the energy
models operate within the same set of assumptions
and expectations, which is why this method does
not determine the future but rather provides ex-
pectations based on the past. A statistical analysis
is always focussing on the past. The implicit as-
sumption is that relations in the past are at least
likely to hold in future. This must not be the case.
But given that the energy models are also cali-
brated with and based on statistical data, the ana-
lysis is consistent with practices in energy
modelling, less subjective than expert elicitation
and more specific than general disclaimers.
The method can be criticised for an idealisation

inherent to all modelling techniques. The assump-
tion that the sample space Ω can be known in its
entirety does not hold from a realistic point of
view. It is not possible to know and account for
all thinkable and hence possible alternative events
(which by definition comprise uncertainty). Given
that an energy model is confronted with the same
arbitrarily defined sample space, it is equally mean-
ingless to compute a projection or forecast with an
energy model as it is to assess its uncertainty.
However, if the energy models are used, it becomes
meaningful to assess their uncertainty within the
model’s sample space. The approach has the dis-
tinct advantage of analysing the relevance of poten-
tial influences in statistical terms and subjective
expert knowledge (by means of prior specification),
in contrast to a purely subjective uncertainty as-
sessment as expert elicitation. However, experts
may have a clear intuition which influences
affect an input variable of an energy model.

Analysing these influences in terms of BMA and
Probabilistic Uncertainty may render some intuitive
over- or underestimations transparent.
The energy models may have time horizons of

decennia, and the question arises, whether the un-
certainty assessed by the proposed approach is
stable for energy model results in the long-term
future. Indeed, it is not. Uncertainty is expected to
be higher, the further in the future, a model-based
statement is settled. If, for example, an energy
study promotes a specific energy system state in
the year 2040, the uncertainty is expected to be
higher than the uncertainty 1 year from now. Un-
certainty over time of assumptions means that if a
model has a modelling horizon, and model results
are displayed as time series, the related uncertainty
of the results must increase towards the end of
the horizon in future. As stated above, this is due
to the facts that model inherent simplifications and
generalisations perform error propagation and that
assumptions regarding mid- or long-term future
cannot be verified or falsified with available tests
at present time. Note, that the related uncertainty
increases the further in the future an assumption
is made. Let A be an assumption with a time
index x, x = 1,2,3,…,n. The time index is to be read
as some sort of regular time interval, e.g. hour,
month, or year. Further, assume that a model is
comprised of different assumptions A, each of
which is time dependent. An assumption A, as the
natural gas price, in 1 month from now is
dependent on different influences, let those influ-
ence be named Ij, with an index for there is more
than one influence, indexed by j = 1,2,3,…m. For
this example influences such as extraction rates,
transportation infrastructure, political stability of
producing countries and the like may be relevant.
Let Ax be a function of Ixj, that is, an assumption
A at a given point in time x is dependent on the
influence Ij of that time x. The assumptions of in-
fluences, e.g. the extraction rate Ixj, is with increas-
ing time less based on information which translates
to uncertainty. This uncertainty is also increasing
for A, as it is a function of Ixj. It becomes clear
that the uncertainty of assumption A heavily de-
pends on the availability of information regarding
the influences Ij. If no information whatsoever is
available, the influences are pure assumptions
which can be arranged via the predictive density of
the presented approach, thereby respecting histor-
ical data. Generally, uncertainty can but must not
increase as the assumption lies further in the fu-
ture, due to unforeseeable developments. The pro-
posed lower bound of uncertainty captures the fact
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that an uncertainty analysis based on statistical
data may give an evaluation of the lowest uncer-
tainty indicated by statistics, and that some energy
model results may be more uncertain.

Conclusions
The presented Bayesian approach for uncertainty
quantification in terms of assumption probabilities al-
lows an uncertainty assessment of input to energy
models.
In the first section, the question where uncer-

tainty is present in energy models and why it
should be addressed was discussed. This discussion
should raise the awareness that energy model re-
sults are highly dependent on input assumptions.
The practice of “general disclaimers” seems unsatis-
factory, especially, if model-based statements are
used for policy advice and decision support creat-
ing far-reaching social, economic, and environmen-
tal consequences.
The next section provided a definition of uncer-

tainty. The probabilistic uncertainty measure de-
fined allows quantifying uncertainty in a coherent
manner with probability theory. The distinct advan-
tage with respect to commonly used qualitative as-
sessments is an unambiguous representation of
uncertainty, which is understandable without tedi-
ous lecture of explanatory notes. “The probability
that a statement might not be true is at least Ψ
(e.g. 89 %)” seems more explicit and understand-
able than commonly used “likely”, “very likely” and
the like cf. [48]. Intentionally, the approach relies
on established methodologies (BMA) and concep-
tual frameworks (probability theory) to derive such
quantitative statements. Another advantage is a
consistent and transparent quantitative interpret-
ation of implicit assumptions as predictive densities
for assumptions of input variables to energy
models.
Finally, the presented case study aimed at exem-

plifying how the approach in practice could work.
Indeed, specifications of BMA such as the chosen
sample-routine or the prior choice should be dis-
cussed individually for a specific input variable of
an energy model. The case study illustrates how the
approach could add to the tools of uncertainty
quantification in energy modelling.
Further research should include practical specifi-

cations of the approach and legitimate inference
from uncertain energy model results. A comparison
of the different energy models could be carried out
to evaluate their associated uncertainty.

Endnotes
1Typical model horizons are short term: hours up to

days, mid-term: up to 2030, long term: up to 2050 or
2100

2Assuming the” Law of Demand”, i.e. the quantity
demanded depends negatively on price, ceteris pari-
bus. This is a very useful and convenient theory, as
long as the ceteris paribus assumption is not ignored,
and it is understood that complements as well as sub-
stitutes exist for most traded goods, as Bierens and
Swanson note [55].

3In contrast to aleatoric uncertainty, for example, nat-
ural variability, which can be modelled by stochastic
techniques cf. [56].

4This step could involve a sensitivity analysis in order
to reduce the amount of input variables when large
models are evaluated. See also limitations and discussion
of the approach.

5Note that by condition 1 and 2 ℱ is closed under fi-
nite intersections.

6Other measures, such as a Popper-measure would be
thinkable, allowing for conditionalization on zero-
probability events. The benefit of such a definition is left
to future work.

7The proof is omitted but can be found in most
lecture notes on probability and measure theory, e.g.
[57, 58].

8In the case study, this influence is represented by the
explanatory variable NG_rent, the difference between
the value of natural gas production at world prices and
total costs of production.

9Data and inferences from them are not the focus of
this text, rather a discussion of the methodology and
its application in the field of energy economics is
sought. A coherent database with as many observa-
tions as possible should be applied in an uncertainty
assessment for a specific input variable of an energy
model.

10In the following, the terms regressors, explanatory
variables, and influences are used interchangeably.

11This translates to “BRIC” g-prior in the modelling
exercise

12For other options such as reversible-jump sampler
for BMS model package in R, see [38].

13See Appendix.
14Which is used for medical treatment, nota bene.
15For example, based on expert knowledge one could

choose to include an influence that is expected to be-
come more relevant in future than it was in the past.

16For source information refer to the appendix.
17Of course, the influences should be detailed too.
18For example, the formulation of the relations in

the target system in linear terms as a Linear Program
does.
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Appendix
Used data is freely available from the following sources.
However, consistent data with more observations of in-
fluences deemed relevant is recommended if the focus
lies on interpreting results.

Table 7 Explanation of abbreviations of influences for the case study and source of data

Abbreviation Influence Unit Source

GN_Price Average German import price [US dollars per million BTU] [21]

INDPROD Production of total industry in Germany “DEUPRODINDAISMEI”
seasonally adjusted

Index 2010 = 100 [49]

DEPL Adjusted savings: energy depletiona [current billion US$] [50]

TRA Road sector energy consumption [% of total energy consumption] [50]

RENEW Combustible renewables and waste [% of total energy] [50]

ELC Electric power consumption [1000 kWh per capita] [50]

GASELC Electricity production from natural gas sources [% of total] [50]

OILELC Electricity production from oil sources [% of total] [50]

IMPTOT Energy imports, net [% of energy use] [50]

NRGPROD Energy production [10,000 kt of oil equivalent] [50]

GDP GDP [constant 2005 US$ 10E^12] [50]

INDVAL Industry, value added [% of GDP] [50]

NGRENT Natural gas rents: difference between the value of natural gas
production at world prices and total costs of production.

[‰ of GDP] [50]

OILRENT Oil rents [‰ of GDP] [50]

USCONNG US Natural Gas Consumption [10^12 CUBIC FEET] [51]

WTI_PRICE Spot Oil Price West Texas Intermediate [U.S.Dollars per Barrel] [51]

CRUDE_PRICE Oil: Crude oil prices 1861—2012_$2012 [U.S. Dollar 2012] [52]

IMP_DE Natural Gas Imports GERMANY [EJ=10^18] [53]

HDD Heating degree days by region NUTS-2-Regionen–Karlsruhe (nrg_esdgr_a) [jährliche Daten] [54]
aEnergy depletion is the ratio of the value of the stock of energy resources to the remaining reserve lifetime (capped at 25 years). It covers coal, crude oil and
natural gas
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Table 8 Dataset used for the case study

Average German
import price_US
dollars per million Btu

INDPROD(Index
2010 = 100)

Adjusted savings:
energy depletion
(current Billion US$)

Road sector energy
consumption (% of total
energy consumption)

Combustible
renewables and
waste (% of total
energy)

Electric power
consumption
(1000 kWh per capita)

Electricity production
from natural gas
sources (% of total)

Electricity
production from
oil sources (% of
total)

Energy imports,
net (% of
energy use)

3.99563468 66.2135619 3.77520916 11.7294832 1.49747221 6.23997182 7.54998182 1.82360855 42.8917551

4.2535868 69.3901986 3.64431151 11.4272989 1.45753813 6.44853986 5.37594129 1.84320732 41.39998

3.92861881 70.6643124 2.0413034 12.0147954 1.19256446 6.53023871 5.71296614 2.61453816 43.9085583

2.54750327 70.9352778 1.01961617 12.4673743 1.11974275 6.6662196 6.21263905 2.60355498 44.4736041

2.22035909 73.4892707 0.97673142 12.836138 1.23814233 6.77630791 6.05747666 2.15569475 44.0732178

2.00051377 77.1098294 1.23582807 13.36883 1.2014723 6.83532991 6.92056111 1.87245357 43.6070961

2.77589313 81.0993623 1.49687193 14.389203 1.36590835 6.63973169 7.38793025 1.8984753 46.983021

3.19009487 83.4285115 1.32569489 14.9969186 1.39062964 6.56479719 6.73856812 2.75089301 51.1120872

2.69056745 81.4907401 1.03765768 15.5911481 1.47425286 6.445874 6.16277414 2.47661485 51.6788447

2.49530955 75.3942132 0.97194923 16.1960639 1.51654485 6.28841635 6.61719813 1.93133992 54.5620005

2.35253656 77.6002914 0.8765351 15.9959469 1.55744409 6.24495723 7.66386459 1.67058577 56.4008236

2.39327263 78.1219991 0.95745389 16.067908 1.58984177 6.32770975 8.10414141 1.6859542 56.9018319

2.46046641 78.2859643 1.39360843 15.6751563 1.62031704 6.40333373 8.71959048 1.44654625 58.8114956

2.6410946 80.7081786 1.21107619 15.892132 2.02310059 6.42779877 9.07427041 1.25289456 58.3624964

2.32055722 83.6670064 0.83972109 16.2982897 2.23177303 6.47949025 9.74519122 1.1542883 60.3287856

1.87896843 84.6433451 0.81202931 17.2081933 2.13758883 6.505133 9.96534219 1.05783239 59.0460819

2.89110047 89.4132439 2.04778964 16.719146 2.33590719 6.63542141 9.17242837 0.83608096 59.7912759

3.6597883 89.7401509 2.24042841 15.8936685 2.55665148 6.7626534 10.0414858 0.81768594 61.14493

3.22899751 88.7426655 1.58382823 16.1079634 2.74806659 6.90078053 9.36689154 0.74267038 60.2666617

4.06023697 89.0108969 2.5013849 15.3577933 3.29759468 6.98333742 9.72582176 0.7833189 59.812943

4.31508165 91.7267393 3.90068434 15.5311324 3.68675527 7.08253137 10.3488964 1.66642015 59.3611541

5.87713658 95.2472758 4.96140615 15.2581738 3.8889694 7.11341229 11.3129607 1.72519472 59.3508965

7.851238 101.081308 4.99930416 15.3740419 4.63462752 7.17413767 12.0874564 1.51718813 59.1615731

8.02534168 108.080469 5.61738073 15.4860496 6.88226996 7.18430855 12.2742421 1.36669918 57.298701

11.5617693 108.30679 9.25414091 14.8288494 6.84385034 7.14910859 13.8866401 1.46448652 59.1912556

8.52238166 89.5557418 3.76340167 15.8137633 7.91003257 6.75305764 13.5002062 1.64961827 58.8162276

Energy production
(10000 kt of oil
equivalent)

GDP (constant
2005 US$
10E^12)

Industry, value added
(% of GDP)

Natural gas
rents (‰
of GDP)

Oil rents
(‰ of
GDP)

US Natural Gas
Consumption(10^12
CUBIC FEET)

Spot Oil Price_West
Texas Intermediate
Dollars per Barrel

Oil: Crude oil prices
1861 - 2012_$2012

Natural Gas
Imports GERMANY
(in EJ 10^18)

HGT_KA(100Kd)

19.7716189 18.41207017 38.8114012 24.9589545 10.2987245 17.950527 29.2755 63.5968751 15.44622 32.9167

20.9322801 18.84069124 39.0488442 20.2780144 9.5075317 17.280943 27.97275 58.8067903 16.41973 34.16959
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Table 8 Dataset used for the case study (Continued)

20.0065217 19.27164177 39.133613 11.8335614 2.85745575 16.221296 15.04 30.2284801 16.93865 32.92562

19.9527381 19.54185939 38.4110703 7.25528732 3.05210996 17.210809 19.1619167 37.2585778 18.47311 33.7253

20.2316314 20.26632218 38.1049411 5.58754984 2.22713651 18.029585 15.9595833 28.9638589 17.99385 28.54712

20.0505497 21.0560099 37.6931739 4.71115597 2.78571576 19.119001 19.5908333 33.7468247 19.62732 28.42448

18.6166593 22.1625045 37.3389936 4.87914314 2.90510948 19.173555 24.4929167 41.6779341 19.85817 28.11743

16.8303511 23.29462319 36.6039902 4.69586209 2.07273521 19.562067 21.48125 33.7199502 20.63657 32.55735

16.3241575 23.73999005 35.4378737 3.6287842 1.67921912 20.228228 20.5614167 31.617592 21.15799 28.70615

15.1998991 23.50209223 33.144747 4.60764107 1.40088224 20.789842 18.4581667 26.9659888 22.65243 29.9521

14.5140276 24.08300552 32.8247982 3.9128976 1.17223059 21.247099 17.1858333 24.5044579 23.75961 27.06579

14.5026649 24.48687858 32.1439038 3.60300373 1.09822526 22.206889 18.4275 25.6360076 25.73843 29.89797

14.3255737 24.68051634 31.2615649 5.6539181 1.39011447 22.60908 22.1541667 30.2444928 29.22797 34.39832

14.3576406 25.10928568 31.0614983 5.71194784 1.4143878 22.737342 20.5991667 27.3117977 28.48389 29.39784

13.5969709 25.57678257 31.0242697 4.10495705 0.82099771 22.245956 14.3883333 17.9106723 27.4805 28.85699

13.7173141 26.05534448 30.4583259 3.62927753 1.16851663 22.405151 19.2516667 24.7648382 28.65234 27.77843

13.5336203 26.85202557 30.4944936 11.0274053 2.80307489 23.333121 30.2983333 37.9929394 28.41697 25.67718

13.4702341 27.25866488 29.8507936 10.5372081 2.35968142 22.238624 25.9241667 31.6892757 29.51423 28.41534

13.4518425 27.26143113 29.3112506 6.93685973 2.41392612 23.027021 26.0975 31.9354608 30.63709 26.80011

13.5860526 27.15907974 29.099429 9.93780865 2.52294489 22.276502 31.14 35.9747633 31.87328 28.58912

13.844668 27.47443267 29.4831463 8.90057958 2.88938493 22.402546 41.4383333 46.5082817 33.89857 29.61991

13.6249634 27.66253793 29.4010048 13.723637 4.19502643 22.014434 56.4658333 64.094803 34.20663 29.40079

13.9051621 28.68605183 30.0324022 12.3475472 4.72473083 21.699071 66.1033333 74.1899101 35.19141 28.02505

14.1221139 29.62381187 30.4819958 9.88857375 4.50794009 23.103793 72.3625 80.157894 33.23694 26.26759

13.6559903 29.94469731 29.7478575 11.6753374 5.12832931 23.277007 99.5675 103.711457 34.80471 28.30539

12.900774 28.40389395 26.7598781 5.05099964 2.90422434 22.910078 61.6933333 65.9995822 35.51278 28.80967
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Table 9 Input data—basic statistics for the uncertainty assessment

GN_Price INDPROD DEPL TRA RENEW ELC HDD

Min. 1.879 Min. 66.21 Min. 0.812 Min. 11.43 Min. 1.120 Min. 6.240 Min. 25.68

1st Qu. 2.469 1st Qu. 77.23 1st Qu. 1.024 1st Qu. 14.50 1st Qu. 1.462 1st Qu. 6.447 1st Qu. 28.16

Median 3.041 Median 82.46 Median 1.540 Median 15.51 Median 1.822 Median 6.638 Median 28.76

Mean 4.005 Mean 83.97 Mean 2.480 Mean 14.94 Mean 2.669 Mean 6.675 Mean 29.51

3rd Qu. 4.205 3rd Qu. 89.52 3rd Qu. 3.734 3rd Qu. 15.97 3rd Qu. 3.160 3rd Qu. 6.884 3rd Qu. 29.94

Max. 11.562 Max. 108.31 Max. 9.254 Max. 17.21 Max. 7.910 Max. 7.184 Max. 34.40

GASELC OILELC IMPTOT NRGPROD GDP INDVAL

Min. 5.376 Min. 0.7427 Min. 41.40 Min. 12.90 Min. 18.41 Min. 26.76

1st Qu. 6.784 1st Qu. 1.2813 1st Qu. 48.02 1st Qu. 13.63 1st Qu. 22.45 1st Qu. 29.90

Median 8.897 Median 1.6685 Median 57.83 Median 14.34 Median 24.89 Median 31.16

Mean 8.836 Mean 1.6465 Mean 54.18 Mean 15.73 Mean 24.63 Mean 32.97

3rd Qu. 10.022 3rd Qu. 1.8920 3rd Qu. 59.31 3rd Qu. 18.17 3rd Qu. 27.26 3rd Qu. 37.16

Max. 13.887 Max. 2.7509 Max. 61.14 Max. 20.93 Max. 29.94 Max. 39.13

NGRENT OILRENT USCONNG WTI_PRICE CRUDE_PRICE IMPP_DE

Min. 3.603 Min. 0.821 Min. 16.22 Min. 14.39 Min. 17.91 Min. 15.45

1st Qu. 4.700 1st Qu. 1.481 1st Qu. 19.27 1st Qu. 19.18 1st Qu. 29.28 1st Qu. 20.05

Median 6.324 Median 2.654 Median 22.11 Median 23.32 Median 33.73 Median 27.95

Mean 8.426 Mean 3.088 Mean 20.97 Mean 32.12 Mean 42.66 Mean 26.15

3rd Qu. 10.905 3rd Qu. 3.015 3rd Qu. 22.56 3rd Qu. 30.93 3rd Qu. 55.73 3rd Qu. 31.56

Max. 24.959 Max. 10.299 Max. 23.33 Max. 99.57 Max. 103.71 Max. 35.51

Fig. 6 Scatterplot of potential explanatory variables (influences)
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