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Abstract

Background: The accessibility of reliable local solar resource data plays a critical role in the evaluation and
development of any concentrating solar power (CSP) or photovoltaic (PV) project, impacting the areas of site
selection, predicted output, and operational strategy. Currently available datasets for prediction of the local solar
resource in south Louisiana rely exclusively on modeled data by various schemes. There is a significant need,
therefore, to produce and report ground measured data to verify the various models under the specific and
unique ambient conditions offered by the climate presented in south Louisiana.

Methods: The University of Louisiana at Lafayette has been recording onsite high-fidelity solar resource
measurements for the implementation into predictive models and for comparison with existing datasets and
modeling resources. Industry standard instrumentation has been recording direct normal irradiance (DNI), diffuse
horizontal irradiance (DHI), and global horizontal irradiance (GHI), as well as meteorological weather data since
2013. The measured data was then compared statistically to several available solar resource datasets for the
geographic area under consideration.

Results: Two years of high-fidelity solar resource measurements for a location in south Louisiana that were previously
not available are presented. Collected data showed statistically good agreement with several existing datasets including
those available from the National Solar Radiation Database (NSRDB). High variability in year-over-year monthly DNI due to
cloud cover was prevalent, while a more consistent GHI level was observed.

Conclusions: The analysis showed that the datasets presented can be utilized for predictive analysis on a monthly
or yearly basis with good statistical correlation. High variability in year-over-year monthly DNI due to cloud cover was
prevalent, with as much as a 70 % difference in monthly DNI values observed in the measured data. A more consistent
GHI level was observed since the GHI is less susceptible to cloud cover transients. Collected data showed statistically
good agreement with several existing datasets including those available from the NSRDB when forecasting was for
monthly and yearly intervals.

Background
As an integrated part of the University of Louisiana at Lafa-
yette (UL Lafayette) Solar Technology Applied Research
and Testing (START) Lab, local solar resource measure-
ments have been conducted onsite since the summer of
2013. The compilation of short- and long-term solar re-
source data has been conducted for performance evaluation
of the onsite solar energy technologies as well as the gener-
ation and validation of reliable solar resource models [1, 2].

The primary solar energy asset during the period of investi-
gation presented here has been a pilot scale (650 kWth)
parabolic trough solar thermal power plant, constructed
and operated by UL Lafayette, for which knowledge of the
solar resource was critical. The results of the solar resource
study relative to the operation of this power plant will
therefore be presented. In general, there are several import-
ant roles that accurate solar resource evaluation and fore-
casting plays in solar power applications. In the project
planning stages, understanding the quality and quantity of
the resource is essential to accurately predict system per-
formance and financial viability of any future project and
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can be broken down into three areas of study [3]. Site selec-
tion, predicted annual plant output, and short-term tem-
poral performance and operating strategy will all be grossly
affected by the local short- and long-term resource avail-
ability and fluctuation [4]. Additionally, accurate measure-
ment and dissemination of resource data to determine
short- and long-term plant performance is vital to optimize
performance once operation is underway. Reliable resource
measurement will therefore remain vital to the plant’s effi-
cient operation throughout its service life.
From the initial planning stages, site selection will typically

be based on datasets of historical solar resource data involv-
ing changes in weather affecting ground-level insolation
from year-to-year, and therefore, more years of data are ad-
vantageous for constructing a representative annual dataset
[5]. Reliable long-term (25 year) historical datasets are rarely
available. Typical meteorological year (TMY) datasets, avail-
able from several sources, including the National Renewable
Energy Laboratory, can be efficiently used to compare the
solar resource at alternative sites and to predict a range of
annual performance values of a proposed solar energy plant.

Data from individual years are useful in illuminating year-
to-year variability that can be expected for the specific locale
which assists in the sizing of components of solar systems
accurately [6, 7].

Introduction
The available solar resource is typically measured as a
combination of several components of the solar radiation
that reaches the ground [8]. Extra-terrestrial radiation can
be transmitted, absorbed, or scattered by an intervening
medium in varying amounts depending on the wavelength
and interactions of the Earth’s atmosphere. For purposes
of usefulness with solar energy conversion techniques,
solar radiation measurements result in three fundamental
components of interest. Direct normal irradiance (DNI) is
the direct or beam radiation available from the solar disk
that reaches the surface with no change in direction. Dif-
fuse horizontal irradiance (DHI) is the scattered diffuse ra-
diation from the sky dome. Global horizontal irradiance
(GHI) is the total hemispheric irradiance reaching the

Fig. 1 Concentrating solar resource of the USA. Source: National Renewable Energy Laboratory solar data center
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Fig. 2 Screen capture of NREL NRSDB data viewer with GHI displayed. Source: NREL solar data center

Fig. 3 NREL NSRDB stations
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ground which can be determined from the geometric sum
of the DNI and DHI [3]:

GHI ¼ DNI � cos zenithð Þð Þ þ DHI ð1Þ

where zenith is the topocentric solar zenith angle mea-
sured in degrees. The DNI is of particular interest to
concentrating solar power (CSP) projects since the DNI
is the component of the solar radiation which can be
concentrated and therefore of particular interest to this
study for the operational performance analysis of the
solar thermal power plant at UL Lafayette. Likewise, the
GHI is of particular interest to photovoltaic (PV) pro-
jects as most PV installations are non-concentrating and
are not dependent on direct beam radiation but of the
total hemispherical radiation intercepted on the plane of
the array.
Louisiana resides in an area of the USA where the solar

resource is substantially less than that of the current com-
mercial scale CSP installations of the Southwestern United
States [9]. Figure 1 shows a map of the US Concentrating
Solar Resource developed by the National Renewable En-
ergy Laboratory (NREL), while Fig. 2 is a screen capture of
the NREL NRSDB viewer displaying the GHI resource.
Economical utilization of the solar resource in this region
would significantly increase the footprint of viable areas for
commercial development. According to the NREL model,
Louisiana receives an average solar DNI resource between
4 and 5 kWh/m2/day. NREL Typical Meteorological Year
(TMY3) data [7] resulted in a median peak DNI for the

6 months beginning in April of 688 W/m2 for the Lafayette
area, with a 15 % error band. While these levels are sub-
stantially lower than those of the Southwester Unites States,
the insolation still represents a significant level of energy.
Indeed, based on the existing installed power capacity of
Louisiana [10], one square mile of installed CSP projects
would generate about 1 % of the current capacity, based on
a solar-to-electric efficiency of 20 %. While there are cur-
rently several datasets available for prediction of the solar
resource in Louisiana, these datasets almost exclusively rely
on modeled data for their output [3, 6, 7, 11]. There is a
significant need, therefore, to produce ground measured
data to validate the various models under the specific and
unique ambient conditions offered by the climate presented
in south Louisiana. The work described in this paper pro-
vides the first available measured data in the geographic
area under consideration and offers the first validation of
available solar resource models for south Louisiana.

Available models
A few of the models available for predicting local solar
resource will be discussed here for comparison with the
data collected onsite in Louisiana. The National Solar Radi-
ation Database (NSRDB) is widely available from several
websites and is in the care of NREL. The NSRDB contains
three versions of historical TMY data based on ground site
models referencing cloud cover and other available infor-
mation. Figure 3 is a map of the site locations used in the
construction the database. Nearly all of the solar data in the
original and updated versions of the NSRDB are modeled.

Fig. 4 Map of the TMY NSRDB ground measurement sites
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The intent is to supply hourly values that, in the aggregate,
will provide a statistical representation that closely approxi-
mate those of the measured solar data over the period of a
month or year [6, 7]. The NSRDB does employ limited
measured solar radiation and meteorological data. Figure 4
is a screenshot of the NSRDB viewer with the measurement
sites identified. As can be seen, there are few measurement
sites operating in the region of the country that Louisiana
resides in. Two models that were used to complete the
NSRDB datasets are the SUNY (State University of New
York) model and the meteorological-statistical (METSTAT)
model. The SUNY model, developed by Perez et al., is an
operational model based on satellite imagery [12]. Available
commercially from SolarAnywhere® through Clean Power
Research, hourly resource data was also provided via Solar-
Anywhere® (SA) to NREL for free for the years 1998
through 2005. METSTAT is a hybrid operational-empirical
model employing the METEOSTAT and GOES stationary
satellites. The NASA surface radiation budget (SRB) is a
freely available operational dataset developed from a cloud
cover-based dataset and developed by Whitlock et al. [13]
and providing 3 h, daily, or monthly averages and referen-
cing a 22 year average [3].
The most recent NSRDB data, shown in the NSRDB

data viewer utilizes the latest version of the SUNY
model. This data provides monthly average and annual
average daily total solar resource averaged over surface
areas of 4 km in size. The data are generated using the
PATMOS-X algorithms for cloud identification and
properties, the MMAC radiative transfer model for
clear sky calculations and the SASRAB model for cloud
sky calculations [14]. The data are averaged from
hourly model output over 8 years (2005–2012) with
each year downloadable from the website for any user
identified location. For all of the models, it should be
noted that physics-based solar radiation models grounded
in measurements can be no more accurate than the data
used to generate the model and cannot be validated or
verified to a level of accuracy greater than that of the mea-
surements [15].

Methods
Weather station setup
Solar radiation measurements were taken onsite by a
weather station consisting of a Kipp and Zonen SOLYS
2 Sun Tracker with CHP1 pyreheliometer and CMP10
pyranometers (Figs. 5 and 6). The SOLYS 2 sun tracker
provides fully automated year-round two-axis tracking of
the position of the Sun with a pointing accuracy of less
than 0.1°. It has Baseline Surface Radiation Network
(BSRN) levels of performance and reliability. Mounted on
the SOLYS 2 is a CHP1 pyrheliometer which fully com-
plies with the most current ISO and World Meteorological
Organization (WMO) performance criteria for First Class

Normal Incidence Pyrheliometer with a World Radiomet-
ric Reference (WRR) calibration certificate. For a first-class
pyrheliometer, the WMO limits maximum errors to 3 %
for hourly radiation totals. In the daily total, an error of
2 % is expected because some response variations cancel
each other out for longer integration periods. Kipp and
Zonen, however, anticipate maximum uncertainty of 2 %
for hourly totals and 1 % for daily totals for the CHP1
pyrheliometer [16]. The CHP1, installed in July of 2013,
provides a measure of the DNI or the direct beam portion
of the solar spectrum which can be concentrated for con-
version to thermal energy. The CMP10 Secondary Stand-
ard pyranometer was then installed in November of 2014
to measure the global horizontal irradiance, a measure of
the total (diffuse + direct) radiation reaching the surface.
For a “high-quality” pyranometer, the WMO expects max-
imum uncertainty error for the hourly radiation totals of
3 % and errors in daily totals less than 2 % [17]. Also
installed is a second CMP10 pyranometer to give a direct

Fig. 5 Radiometer setup at the UL Lafayette START Lab
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measurement of the diffuse potion of the spectrum, installed
in December, 2014. A Campbell Scientific CR1000 provides
data logging and wireless data streaming to the nearby Cleco
Alternative Energy Center. Until now, the closest proximity
measured data available for local solar resource measure-
ment and prediction was in Lake Charles, LA, about 100
miles to the west. For measurement of the ambient condi-
tions, a Davis Vantage Vue wireless meteorological weather
station is also located within the START Lab. The Vantage
Vue provides all the necessary meteorological data for
proper evaluation of the solar technologies on site and wire-
lessly steams and logs the data within the Cleco Alternative
Energy Center. Data including ambient temperature, humid-
ity, barometric pressure, wind speed, wind direction, rainfall,
and dew point are constantly monitored and recorded. This

method of collecting and combining meteorological data
from a weather station with DNI from a tracking pyrheliom-
eter and DHI and GHI from pyranometers is an industry
standard. Similar active sites can be examined through the
NREL Measurement and Instrumentation Data Center
(MIDC) website [18].

Data comparison
The data presented here represents about 2 years of col-
lected DNI data at the Louisiana START Lab with about
6 months of collected GHI data. Here, we shall discuss
the results of these measurements and their statistical
relationship with some available modeled data. Figure 7
gives the results of hourly averaged DNI values aggre-
gated into monthly averages for all available measured

Fig. 6 Radiometer setup at the UL Lafayette START Lab

Fig. 7 Hourly averaged DNI values aggregated into monthly averages for measured and modeled data
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and modeled data. The modeled datasets include the
TMY3 dataset, the SA dataset, and the NASA SRB data-
set. The figure highlights the seasonal variability over
the model year as well as the climatic variability year-to-
year. As can be seen for the February daily average from
the 2 years of measured data, the local weather varia-
tions can generate large fluctuations in short-term solar
availability. Figure 8 shows the actual daily direct beam
energy totals for the 2014 calendar year. Included is a
30-day trend line to relate the daily data points to the
monthly averages. The variability in daily totals illumi-
nates the difficulty in short-term resource predictions, as
well as the number of days with virtually zero solar avail-
ability. The daily minimums play an important role in

the operating strategy of a solar plant, especially in the
start-up logic.
The annual average solar resource from the measured

data was 3.95 kWh/m2/day while for the TMY3 data, it was
4.31 kWh/m2/day. However, when excluding February and
March, which in 2014 had what appeared to be abnormally
low numbers of clear days, the annual averages narrow to
4.255 and 4.24 kWh/m2/day for the measured and modeled
data, respectively. When examining the inter-annual vari-
ability, we should see a stabilization to a long-term value as
the number of years of data is averaged. This was shown by
Gueymard and Wilcox [19] for annual resource data, but
should also hold true for monthly resource data. The
monthly averaged daily GHI totals are plotted in Fig. 9 for

Fig. 8 Daily direct beam energy totals for the 2014 calendar year

Fig. 9 Modeled and measured monthly averaged daily GHI totals
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the measured data and the TMY3 dataset for available
months in 2015. It should be noted here that the month of
March along with a short period in February were not
available due to maintenance of the weather station. The
measured and modeled GHI show much better agreement,
which is to be expected since the GHI has less dependency
on hourly cloud clover variations.
There are currently several statistical metrics which have

been proposed to quantitatively correlate and validate the
measured and predictive solar radiation data [4, 10, 20–22].
The root-mean-squared error (RMSE) provides a global
error measure across an entire forecasting period and is de-
fined as:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

i¼1
I mod:;i−Imeas:;i
� �2r

ð2Þ

where Imod.,i is the modeled irradiance value at time step i,
Imeas.,i is the measured irradiance value at time step i, and N
is the number of values under investigation. The normal-
ized RMSE (NRMSE) is normalized by the maximum value
for each measurement period and allows a relative compari-
son across the sampling period. The mean bias error (MBE)
provides a measure of the average forecast bias, defined as:

MBE ¼ 1
N

XN

i¼1
I mod:;i−Imeas:;i
� � ð3Þ

Additional correlation coefficients include the mean ab-
solute error (MAE), to indicate the forecast performance:

MAE ¼ 1
N

XN

i¼1
I mod:;i−Imeas:;i

�� �� ð4Þ

Finally, the Kolmogorov-Smirnov test (K-S test) is a non-
parametric test to determine if two independent datasets

are significantly different, determining an absolute differ-
ence of the cumulative distribution functions, and employ-
ing a confidence level to test a null hypothesis. In this case,
the null hypothesis is that the modeled data are well corre-
lated to the measured data. For a K-S result of greater than
0.05, the hypothesis is assumed true. The results of all of
the measures are tabulated below (Tables 1 and 2):

Results and discussion
When considering the global error metrics, it is conveni-
ent to compare the error relative to the quantities being
analyzed. For reference, the maximum values pertaining
to each case (hourly irradiance, daily and monthly aver-
age insolation) of DNI and GHI measurement are pro-
vided in Table 3, where the reference values used to
calculate the NRMSE can be found and also used for
similar relative comparisons of MAE and MBE. The
TMY3 data outperformed the SA data for the hourly
and daily case when considering DNI; however, the
NASA database was the most accurate with the TMY3
data providing the least accurate forecast, when consid-
ering the data collected over the 2-year period. The
MBE is a measure of the bias, in terms of over or under
predicting the resource. In every instance, the MBE indi-
cated that the model slightly over-predicted insolation.
The bias was small, especially when comparing each
MBE as a percentage of the MAE, a global error metric
that is not as influenced by extreme weather events as
the RMSE. The K-S test shows that prediction on an
hour-to-hour and day-to-day basis proves difficult for
the DNI case; however, a month-to-month prediction
gives statistically well-correlated results with the mea-
sured data. For the GHI case, a daily prediction is pos-
sible because of the lower reliance on predicted cloud

Table 1 Statistical metrics for comparison of various modeled DNI data with measured data

DNI TMY3 hourly
(W/m2)

SA hourly
(W/m2)

TMY3 daily
(kWh/m2/day)

SA daily
(kWh/m2/day)

TMY3 monthly
(kWh/m2/day)

SA monthly
(kWh/m2/day)

NASA monthly
(kWh/m2/day)

RMSE 379.482 392.9972 3.6315 3.7868 1.3958 1.0216 0.8980

NRMSE 0.3814 0.3950 0.3564 0.3717 0.2347 0.1718 0.1510

MAE 247.08 258.82 2.9477 3.0805 1.1972 0.7596 0.7479

MBE 15.0 18.72 0.3541 0.4489 0.3821 0.4585 0.3686

K-S test 0.0000 0.0050 0.0020 0.5180 0.5180 0.5180

Table 2 Statistical metrics for comparison of various modeled GHI data with measured data

GHI TMY3 hourly
(W/m2)

SA hourly
(W/m2)

TMY3 daily
(kWh/m2/day)

SA daily
(kWh/m2/day)

TMY3 monthly
(kWh/m2/day)

SA monthly
(kWh/m2/day)

RMSE 202.3308 346.8822 2.1496 2.0313 0.7089 0.5905

NRMSE 0.1900 0.3257 0.2671 0.2524 0.1060 0.0883

MAE 110.9713 222.8374 1.5233 1.4737 0.5898 0.4321

MBE 4.8751 11.3210 0.0961 0.2231 0.1175 0.2662

K-S test 0.0000 0.6370 0.8110 1.0000 1.0000
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cover. Overall, there was good correlation between each
of the models and the measured data.
For reference, Djebbar et al. [22] reported DNI average

hourly MBE and RMSE of 28.5 and 133.7 W/m2 (67.2 %)
for SUNY V3 beta models from an averaged result of
three sites across Canada. Here, the percentage data can
be taken as equivalent to the NRMSE. Also reported were
the daily results of 8.4 MBE and 30.4 RMSE (52.1 %) and
monthly results of 8.5 MBE and 15.1 RMSE (25.8 %) (all
in kWh/m2/day). Additionally, values were computed for
GHI average hourly MBE and RMSE of 5.6 and 86.5 W/
m2 (27.8 %) for SUNY V3 beta models from an averaged
result of 18 sites across Canada. Also reported were the
daily results of 0.1 MBE and 0.5 RMSE (15 %) and the
monthly results of 0.1 MBE and 0.2 RSME (6.7 %) (all in
kWh/m2/day). Virtually, all the results from the Louisiana
location models compare favorably to the results obtained
by Djebbar for the Canadian location.

Impact to CSP operation
A primary concern for the UL Lafayette START lab is the
predicted performance of the pilot solar thermal power
plant located at the facility. The single-axis tracking para-
bolic troughs are oriented on a north-south axis and
therefore will invoke a cosine error to the solar incidence.
The cosine effect adjustment has been calculated utilizing

the NREL solar position algorithm (SPA) and applied to
the measured and modeled DNI for 2014 [23, 24].
Figure 10 shows the monthly averaged output as well as
the monthly averaged cosine effect adjustment, as a per-
centage of the full DNI. It can be seen that the spring and
fall months are the most advantageous in terms of cosine
effect adjustment.
Based on operating experience of the solar thermal

power plant, a minimum DNI level of 400 W/m2 is
preferred prior to the start-up of the facility. Based on a
requirement of at least 1 h of the minimum DNI for op-
eration, there were 273 actual days of possible operation
in 2014, resulting in 1719 h with an average DNI of
679 W/m2. Figure 11 plots the predicted daily energy
delivered by the solar thermal power plant based on the
TMY3 dataset, the cosine adjustment, estimated effi-
ciency, and aperture area (1050 m2), while Fig. 12 gives
the monthly total energy output, a more stable predictor.
Due to experimental and testing operations, the solar
thermal power plant has not yet operated during every
available resource day, preventing the generation of mea-
sured data to compare to the modeled data over the
course of months or a year. However, based on the stat-
istical quality of the solar resource data, the predicted
plant values can be reliably employed.

Impact to PV operation
The current primary generating method for solar energy in
Louisiana is through PV conversion. This generation is
through residential and commercial rooftop installations, as
there are currently no industrial scale installations of solar
power plants of any kind in Louisiana. The implications of
the solar resource data with regards to PV residential and

Table 3 Maximum quantities of irradiance and insolation for
different cases

Hourly (W/m2) Daily (kWh/m2/day) Monthly (kWh/m2/day)

DNI 995 10.189 5.95

GHI 1065 8.048 6.687

Fig. 10 Cosine adjustment to DNI, N-S tracking single axis concentrator
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commercial installations lie with the GHI metric. As most
PV installations are non-concentrating, the GHI compo-
nent of the solar resource is the primary source of com-
parative data. The GHI values for south Louisiana vary less
from the higher solar resource areas of the Southwestern
United States than the DNI values, due to the fact that the
GHI is less sensitive to transient cloud cover. For example,
based on NSRDB data, the ratio of Louisiana DNI to that
of the most solar-rich areas of the country is about 0.6,
while the ratio of GHI for the same areas is about 0.75. For
this same reason, there should be less variance from year-
to-year for a given month in a given location. The results of

the comparison of modeled to measured values have lim-
ited efficacy due to the limited data acquired thus far, yet it
can be clearly seen that the GHI modeled data provides a
better forecast than the DNI, when comparing the NRMSE,
MAE, and the K-S test. There was a positive MBE, indicat-
ing a slight over-prediction of solar resource by the models;
however, the bias was small.
PV does not require a minimum radiation level for start-

up; therefore, the power produced is primarily a function of
the system efficiency, the insolation and panel orientation.
Actual PV production data was not available at the time of
this study; however, it will be presented in future work.

Fig. 11 Predicted daily energy delivered, TMY3 dataset

Fig. 12 Predicted monthly energy delivered, TMY3 dataset
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Conclusions
This paper has provided the results of 2 years of high-
fidelity solar resource measurements for a location in south
Louisiana that was previously not available. The data was
compared to modeled data from various sources. The mea-
sured data showed that high peak irradiance values were
available for single days (10 kWh/m2/day) and monthly
averages (6 kWh/m2/day), higher than the maximums
produced by models available for the same location. In
addition, high variability in year-over-year monthly DNI
due to cloud cover was prevalent, with as much as a 70 %
difference in monthly DNI values observed in the measured
data. When comparing the measured data to the modeled
data, an over 100 % difference could be seen in the ex-
pected DNI. A more consistent global horizontal irradiance
(GHI) level was observed since the GHI is less susceptible
to cloud cover transients. Collected data showed statistically
good agreement with several existing datasets including
those available from the National Solar Radiation Database
(NSRDB) when forecasting was for monthly and yearly
intervals.
The measurements presented here were made in Crow-

ley, LA, and therefore, the radiation measurements are
relevant to that location only. The size of the area to
which the measurements are relevant is limited by the
variance in local weather conditions and will fluctuate
with weather patterns, which would dictate a need for a
unique station for each commercial or industrial scaled
deployment of solar power in order to capture real-time
performance. Over longer time scales (months and years),
larger areas between stations can be allowed while main-
taining fidelity and definition of measurement.

Future work
Additional seasonal comparisons can be made to deter-
mine the stability of long-term seasonal predictions which
can be important in operational strategies. Furthermore,
due to the inherent variability in the year-to-year data, the
question of how many years it will take before the solar
radiation components stabilize and converge to their
long-term value is an appropriate one. This question was
addressed by Gueymard and Wilcox [19] among others,
and as data is added to the START lab database, an evalu-
ation of this metric can be made accurately. It was found
that for the Eugene, Oregon, area the DNI anomaly levels
only converged within ±10 % after 5 years of data and
approached ±5 % after 10 years of data. The GHI anomaly
was within 5 % after 2 years of data and was within 2 %
after 15 years of data availability. Also addressed by Guey-
mard and Wilcox was the magnitude of the inter-annual
variation, which was found to fluctuate from region to
region. Additionally, a relationship between the monthly
averaged expected DNI values and the clear sky days will
be investigated along with other cloud cover data to gain a

better understanding of the local weather influence on
anticipated solar resource. Finally, long-term data on ac-
tual solar thermal collector and PV array output will be
aggregated and correlated with predicted values for the
further validation and refinement of operational models.
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