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Determinants of efficiency in residential
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analysis on Japan
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Abstract

Background: Rapidly increasing residential electricity demand has made raising energy efficiency an important
policy issue in controlling electricity demand.

Methods: This study uses a stochastic frontier model to estimate the residential electricity demand function and
analyse electricity energy efficiency levels and their determinants using regional data on Japan.

Results: The results confirm the importance of household dwelling types for determining the electricity energy
efficiency. Specifically, the findings suggest that household size and floor area are key to electricity savings, but the
ageing Japanese society shows a limited relationship with electricity savings. Further, promoting living in areas
where the population has aggregated also results in electricity savings.

Conclusions: The findings suggest that forming urbanised cities and realising multi-polarisation-type national
spatial developments might improve electricity energy efficiency and stimulate regional economies.
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Background
Residential energy consumption in Japan is influenced
by changes in social structure, such as the lifestyles of
individuals pursuing greater convenience and comfort in
their lives, and also by the number of households, which
has increased significantly alongside the growth in indi-
vidual consumption. In Japan, energy consumption in
the residential sector in 1973 was set as 100 and, by
2011, this value had risen to 208.9, indicating energy
consumption had grown to more than twice its value at
the time of the first oil shock. Therefore, increasing en-
ergy conservation in the residential sector has become a
pressing issue, and the Japanese government has imple-
mented a variety of measures to achieve it [1].
Up to around 1965, roughly the start of Japan’s period

of high economic growth, coal constituted more than
one third of residential energy consumption. Subse-
quently, it was replaced by kerosene, and by 1973, coal
constituted only around 6% of residential energy

consumption. At that point, kerosene, electric power,
and gas (city gas and liquefied petroleum gas) each
accounted for one third of energy consumption, but sub-
sequently, electric power’s share increased significantly
due to the spread of new consumer electronic devices
that grew in size and functionality. Recently, all-electric
homes have become widespread, and in 2011, electric
power’s share reached 50.6%, a figure that suggests the
importance of analysing electricity demand for residen-
tial use.
Japanese energy consumption is mainly affected by en-

ergy intensity (energy consumption per capita) [2]. How-
ever, energy intensity is not a suitable index of energy
efficiency [3–5], because it depends upon a variety of so-
cioeconomic factors that do not affect energy efficiency.
Therefore, many researchers have attempted to develop
and use other efficiency indexes to measure energy effi-
ciency. Recently, efficiency index measurements have
used stochastic frontier analysis (SFA) and data envelop-
ment analysis (DEA) using data from various countries
[6–9]. Nonetheless, most previous research focused only
on efficiency index scores and did not fully analyse their
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determinants. To address this literature gap, this study
not only measures the levels of efficiency, but also ana-
lyses their determinants.
Otsuka [2] analyses the efficiency of residential energy

demand in Japan, focusing on population agglomeration
and electrification rates as determinants of residential
energy efficiency, and shows that residential energy effi-
ciency is high in population agglomeration areas. This
study focuses on residential electricity demand as an ex-
tension of his research, mainly because household elec-
tricity is consumed the most in urban areas where
population agglomerates. In Japan, around 70% of the
population lives in urban areas, where there are many
multi-dwelling houses, such as condominiums. Further-
more, electrification in urban areas is progressing signifi-
cantly compared to rural ones. Such urban area
concentrations may thus lead to efficient energy use.
Otsuka’s research reveals that residential energy is con-
sumed efficiently in urban areas [2]. This study further
analyses this consideration from the viewpoint of hous-
ing characteristics: (1) household size (members), (2)
housing floor area, and (3) ageing, and clarifies how
these affect the efficiency of residential electricity de-
mand. First, it measures efficiency scores based on the
SFA method and, second, analyses the impact of house-
hold dwelling types on efficiency scores to clarify the
importance of household characteristics for electricity
efficiency. Finally, this study evaluates whether promot-
ing living in population aggregated areas results in elec-
tricity savings. Within the growth strategies for regional
economies in Japan, the importance of forming urba-
nised cities has been advocated for both economic and
environmental aspects. As such, it is necessary to verify
whether an urbanised city policy that targets the transi-
tion from decentralised cities to urbanised (centralised)
cities is effective for energy and electricity conservation
in Japan’s regions.
The remainder of the paper is organised as follows.

The “Literature review” section reviews previous re-
search on energy efficiency, focusing on SFA studies,
and the “Methods” section presents the framework for
empirical analysis and describes the model and data.
The “Results and discussion” section presents the results
of the empirical analysis, and the “Conclusions” section
provides the conclusion and policy implications of the
study.

Literature review
To estimate energy efficiency levels, it is possible to use
both parametric and non-parametric frontier approaches
[6–9]. The parametric approach, such as SFA, is based
on an econometric model. In the non-parametric ap-
proach, such as DEA, the frontier function is a decision
function of several variables.

SFA assumes a specific function type for the efficiency
frontier and estimates the efficiency frontier parametric-
ally. The basic idea in SFA is first estimating the effi-
ciency frontier and, based on this estimation, measuring
the efficiency by calculating the relative distances from
the actual data points to the frontier. As this method
has a high discrimination capability regarding the evalu-
ation of energy efficiency values, it has been used by nu-
merous researchers to measure energy efficiency levels
in an entire country and in specific industries. For in-
stance, a merit of SFA is that particularly high observed
efficiency values (abnormal values) are obtained com-
pared to other samples and the stochastic production
frontier can absorb a significant part of the impact of
these abnormal values, symmetrically, in the error term.
Therefore, the problem of the instability of energy de-
mand function estimates due to abnormal values in view
of high efficiency can be avoided. Therefore, this study
uses the SFA approach. Specifically, the electricity de-
mand data used in this study are official processing data
and may have statistical noise, which can be handled by
SFA but is not possible to process if DEA was used. As
the DEA method does not normally consider statistical
errors, it also does not consider errors in the efficiency
frontier specification. In other words, it does not allow
the introduction of all explanatory variables into the esti-
mation formula, thus not considering the errors that
occur from the absence of various elements. Addition-
ally, for a sample with particularly high observed effi-
ciency values (abnormal values) compared to other
samples, in DEA, the efficiency frontier is determined to
include these observed values as a technically completely
efficient sample, since a negative deviation from the
frontier is not allowed. Consequently, result reliability
may be greatly impaired. Zhou et al. [9] describe an SFA
approach to estimate economy-wide energy efficiency
performance from a production efficiency viewpoint and
find that the proposed parametric frontier (SFA) ap-
proach has greater discriminating power in energy effi-
ciency performance measurements than its non-
parametric frontier (e.g. DEA) counterparts.
Since the SFA method has a strong analytical capabil-

ity for assessing the energy efficiency score, it has been
used by numerous researchers to measure energy effi-
ciency levels. For example, Feijoo et al. [10] measured
the energy efficiency of industries in Spain and con-
cluded that energy policy and regulation reduced CO2

emissions. Buck and Young [11] gauged the energy effi-
ciency of commercial buildings in Canada and estab-
lished that such commercial buildings are highly energy
efficient and that building ownership and economic ac-
tivities are the main determinants of energy efficiency.
Boyd [12] analysed the energy efficiency of wet corn
milling plants and argued that the advantage of using
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SFA to measure energy efficiency is the possibility of
avoiding issues regarding the definition of energy inten-
sity. Boyd et al. [13] used SFA to estimate plant-level en-
ergy efficiency for the manufacturing sector in the USA,
while Aranda-Uson et al. [14] analysed the energy effi-
ciency and measured the energy efficiency scores of four
industries—food, drink, and tobacco manufacturing, tex-
tiles, chemicals, and non-metallic mineral products—in
Spain. Their results show that the total energy consump-
tion of these four industries could be reduced by about
20%. Filippini and Hunt [15] measured the energy effi-
ciency of 29 Organisation for Economic Co-operation
and Development countries between 1978 and 2006, and
they [16] also assessed the energy consumption and effi-
ciency of the residential sector in the USA using state-
level data between 1995 and 2007. Lin and Yang [17]
measured the energy efficiency of the thermal power in-
dustry in China, while Lin and Wang [18] measured the
energy efficiency of the iron and steel industry in China.
Filippini and Zhang [19] estimated energy efficiency in
Chinese provinces and showed it improved in China’s
various industries and provinces.
Many previous studies that used SFA focused on

measuring energy efficiency levels. Therefore, while such
studies have measured the energy efficiency levels of
various countries, regions, and industries, only Lin and
Wang [18] have empirically analysed the determinants
of energy efficiency levels.1

Recently, the focus shifted to urban structures that
concentrate the population in a specific region (urba-
nised cities), and some studies indicated that an urban
structure with high population density may cause in-
creased energy efficiencies.
Newman and Kenworthy [20] were the first to exam-

ine such a relationship between energy efficiency and
urban structures. Using data from 32 cities across the
world in 1980, they looked at population density as a
scale of urban structure and found a negative relation-
ship between population density and per-capita gasoline
consumption. Bento and Cropper [21], using data from
114 US cities for 1990, examined whether urban struc-
tures and public transportation influence the choice of
transportation for commuting and car mileage at house-
hold level. They demonstrated that the probability of
driving to work decreases when population centrality
and rail miles are higher and road density is lower. They
also showed that population centrality, job-housing bal-
ance, city shape, and road density have significant effects
on annual household vehicle miles travelled, thus in-
creasing energy consumption. Brownstine and Golob
[22], using data for the state of California, analysed the
relationships between residential density, private vehicle
usage, and private vehicle fuel consumption, demonstrat-
ing that population density has a direct effect on vehicle

usage, and that both private vehicle usage and popula-
tion density affect fuel consumption. Karathodorou et al.
[23] used cross-sectional data from 84 cities worldwide
to show how population density affects the demand for
automobile fuel. Additionally, they estimated the elasti-
city of fuel demand relative to population density, con-
cluding that the propensity to walk or ride a bicycle
increases in high-density cities because transportation
distances are shorter and that per-capita fuel consump-
tion decreases because public transportation can substi-
tute the use of private vehicles. Su [24] demonstrated
how urban structures affect household gasoline con-
sumption across 50 cities in the USA. Considering traffic
congestion and highway density as part of the urban
structure, Su showed that population density negatively
affects household gasoline consumption. Morikawa [25]
and Otsuka and Goto [26, 27] examined the effect of
population density on energy efficiency and demon-
strated that energy efficiency improved when the popu-
lation density increased.
Compared to regions where the population is

dispersed, residential living in multi-dwelling housing,
such as condominiums, is advancing in regions where
population is agglomerating. Compared to detached
housing, it is highly likely that energy use in
multi-dwelling housing is more efficient, mostly
because floor area is smaller and living areas have
better heat insulation and highly efficient cooling and
heating systems. Therefore, it is assumed that energy
consumption wastage will be reduced. Moreover, in
multi-dwelling housing, there could be more oppor-
tunities to share electricity use between household
members. All these factors will ultimately improve en-
ergy efficiency.
This study focuses on the relationship between urban

residence types and energy efficiency. Specifically, focus-
ing on electricity demand, which accounts for most resi-
dential energy demand, this study examines the
relationships between household dwelling types and the
efficiency of residential electricity demand.

Methods
Empirical model
The residential electricity demand function F (Eq. 1) is
assumed to hold at the prefectural level:

EDjt¼F Pjt ; ICjt ;HSjt ; FAjt ;AGjt ;CDDjt ;HDDjt ; EFjt
� �

; ð1Þ

where EDjt is the residential electricity demand per
household for the jth (j = 1,…,J) prefecture in the tth
period, P residential sector’s real electricity price, IC the
real household income, HS household size, FA house-
hold floor area, AG population ageing rate, CDD cooling
degree day (element of temperature), and HDD heating

Otsuka Energy, Sustainability and Society  (2017) 7:31 Page 3 of 10



degree day (element of temperature). Unfortunately,
since the electricity efficiency level (EF) cannot normally
be directly observed in economic systems, it is necessary
to estimate it. In this study, electricity efficiency levels
are estimated using the stochastic frontier demand ap-
proach proposed by Filippini and Hunt [8, 15, 16]. As
described in the literature review, the parametric frontier
(SFA) approach has many advantages over the non-
parametric frontier (DEA) approach. Therefore, this
study applies energy-based SFA to a dataset at the
Japanese prefectural level.
SFA was originally proposed by Meeusen and van den

Broeck [28], Aigner et al. [29], and Battese and Corra
[30]. Various types of SFA models were also proposed by
other researchers for measuring economic activity effi-
ciency. A comprehensive survey, along with a variety of
advanced SFA models, can be found in the work of
Kumbhakar and Lovell [31].
The SFA model can investigate the level of region-

specific efficiency. Furthermore, this study provides a link-
age between the SFA-based efficiency measure and
regional components to identify energy efficiency determi-
nants. Such a methodological feature is important because
this study uses a panel dataset with a time series aspect
for each prefecture. It is commonly known that the energy
efficiency measure, as investigated in this study, requires
decomposition into several factors that explain energy effi-
ciency improvement. Thus, the SFA approach is useful in
dealing with a panel dataset. Moreover, we can handle un-
observed heterogeneity by using a panel dataset.
Among the proposed SFA models, this study applies

the model of Battese and Coelli [32], because it can
examine the mean inefficiency of firms by a single-stage
regression, using various explanatory variables for effi-
ciency. Following the traditional method, we usually
apply a two-stage approach to estimate efficiency and its
relationship with determinants. The single-stage regres-
sion method of Battese and Coelli [32] can solve an in-
consistency issue remaining in the two-stage approach
that is caused by an assumption about the independence
of inefficiency.2

Regarding the proposed methodology, this study uses
an energy demand frontier model, which can be speci-
fied in a logarithmic form (Eq. 2):

1n EDjt ¼ αþ αP 1n Pjt þ αIC 1n ICjt þ αHS1n
HSjtþαFA 1n FAjtþαAG

1
n AGjt

þαCDD 1n CDDjtþαHDD1n HDDjtþvjtþujt :
ð2Þ

The symbol α represents parameter estimates and in-
dicates a constant parameter (α0), while the other pa-
rameters represent the level of energy demand (αi, i = P,
IC, HS, FA, AG, CDD, HDD). The error term vjt + ujt
consists of two parts: an observational error term (vjt)
and the inefficiency-related error term (ujt). The error
term vjt is assumed to be i.i.d. N 0; σ2v

� �
, as well as inde-

pendent from the inefficiency-related error term ujt and
all regressors of the proposed energy demand produc-
tion. The term ujt is a non-negative random variable, as-
sumed to be independently distributed as the truncation
at zero of the N μ; σ2

u

� �
distribution. The term ujt ex-

presses the efficiency of electricity level EF in (1), inter-
preted as the index of inefficiency (wasted electricity
consumption).
Given Eq. (2), the estimated level of energy efficiency

EFjt is estimated using the conditional mean of the effi-
ciency term E(ujt|vjt + ujt) proposed by Jondrow et al.
[33]. The level of energy efficiency EFjt is measured by
the ratio of observed energy demand Ejt to the estimated
energy demand frontier EF

jt [8]. That is,

EFjt ¼ EF
jt=Ejt ¼ e−ujt ; 0 < EFjt≤1: ð3Þ

This study formulates mean energy efficiency μjt as
follows:

μjt ¼ β0 þ βHS1nHSjt þ βFA1nFAjt

þ βAG1nAGjt; ð4Þ
In the event of an efficiency improvement, the sign of β

will be negative. In this study, an improvement of energy
efficiency is thus explained through multiple consider-
ations, because such improvement occurs through not

Table 1 Descriptive statistics

Description Variable Mean Std. dev. Maximum Minimum

Electricity demand (106 kWh) ED 5315 5265 32,871 895

Real electricity rate (2005 = 100) P 107.86 7.93 136.17 94.75

Household real income (JPY, millions) IC 6.81 1.26 10.16 4.04

Household size (person) HS 2.82 0.32 3.69 2.00

Household floor area (m2) FA 101.16 19.54 152.90 56.81

Ageing population ratio (%) AG 19.11 4.21 28.96 8.45

Cooling-degree day CDD 366 175 1186 0

Heating-degree day HDD 1107 470 2769 0
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only the technological and organisational determinants of
energy demand, but also socioeconomic ones in the pro-
duction and consumption of energy services. First, it is as-
sumed that energy efficiency increases with household
size, because more residents share lighting and other elec-
tricity uses in kitchens. A household uses electricity and
appliances for many tasks, such as to a warm meal. There-
fore, electricity and appliances are partially used as inputs
in the production of a warm meal [34]. As household sizes
increases, their members share home appliances, and
hence, electricity demand per household member im-
proves, increasing electricity use efficiency. Therefore, the
coefficients of household size (HS) can take negative signs.
Second, it is also assumed that there is energy waste in
decentralised cities. Otsuka [2] finds low energy efficiency
in Japan’s non-metropolitan regions, which contain many
decentralised cities with numerous detached houses. As
detached houses in decentralised cities tend to have large
floor areas per household membership, it is therefore an-
ticipated that the larger the floor area (FA), the lower elec-
tricity efficiency is. That is, the FA coefficient values are
expected to be positive. Third, ageing (AG) can take nega-
tive values because the elderly are less active and are sen-
sitive to electricity savings compared to younger people.

Data
This study’s dataset consists of data from Japan’s 47 pre-
fectures from 1990 to 2010. Since there are many types of
regional energy statistics, we compiled the dataset from
various sources.3 Prefectural residential electricity demand
data is from the Energy Consumption Statistics by Prefec-
ture (Agency for Natural Resources and Energy, the Min-
istry of Economy, Trade and Industry). For the relative
price index, electricity rates from the consumer price
index are used for each prefectural capital, deflated by the
price index of other consumer goods. Income figures are
taken from the Annual Report on Prefectural Accounts
(Cabinet Office) and converted to real figures based on
the total prefectural consumption deflator. Regarding
household size and floor space, national census data and
housing and land survey data published by Japan’s Minis-
try of Internal Affairs and Communications are used. The
ageing population data are taken from the Population
Census (Statistics Bureau, Ministry of Internal Affairs and
Communications). The data on heating and cooling de-
gree days are obtained from The Energy Data and Model-
ling Center [35]. The annual number of cooling degree
days is the cumulative difference of temperatures between
22 °C and the average temperature on each day in a year
whose average temperature exceeds 24 °C, while the an-
nual number of heating degree days is the cumulative dif-
ference of temperatures between 14 °C and the average
temperature on each day in an annual period whose aver-
age temperature is below 14 °C.

Table 1 shows the descriptive statistics. For the estima-
tions, the data were standardised by subtracting the
average values from the original data and dividing it by
the standard deviation.

Results and discussion
Table 2 shows the results of the estimates for the stochastic
frontier demand function. Model A does not consider the
time dummy in the error term, while model B does. Model
B is prepared in order to verify the robustness of the results.
For both models, the signs of the estimated coefficients are
as expected and all variables are statistically significant.
As it is a log-log variable, the estimated coefficient can

be interpreted as elasticity. The estimated price elasticity
is − 0.651 and income elasticity 0.397; the price and in-
come elasticities are larger compared with those in previ-
ous studies on Japanese residential electricity demand
[36]. Since this study does not consider the lag of the elec-
tricity demand in estimating the power demand function,

Table 3 Energy efficiency scores

Summary measure Model A Model B

Mean 0.77 0.69

Median 0.82 0.71

Max 0.97 0.97

Min 0.16 0.14

Std. dev. 0.14 0.19

Table 2 Estimation results

Model A Model B

Coefficient Standard error Coefficient Standard error

Constant (α) − 0.269a (0.035) − 0.401a (0.037)

αP − 0.651a (0.017) − 0.618a (0.020)

αIC 0.397a (0.022) 0.365a (0.022)

αHS 0.135b (0.067) 0.150a (0.056)

αFA 0.328a (0.072) 0.303a (0.061)

αAG 0.171a (0.048) 0.132a (0.044)

αCDD 0.180a (0.016) 0.150a (0.015)

αHDD − 0.134a (0.019) − 0.139a (0.018)

Constant (β) − 0.976b (0.472) − 2.019 (1.534)

βHS − 1.034a (0.219) − 0.213b (0.097)

βFA 1.171a (0.230) 0.396a (0.101)

βAG − 0.022 (0.133) − 0.137 (0.084)

Time dummies No Yes

Sigma-squared 0.382a (0.065) 0.174a (0.015)

Gamma 0.770a (0.040) 0.602a (0.047)

Log likelihood − 417.382 − 344.568

Mean efficiency 0.770 0.690
aSignificance at the 1% level
bSignificance at the 5% level
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the estimated price and income elasticities mean long-
term elasticity and, therefore, large values. As only the
time dummy was considered in the estimates, there are no
major differences in the sizes of estimated coefficients and
the results are robust. The elasticity of household size is
comparatively small, at 0.135. This result suggests that, if
household size increases by 10%, electricity demand will
also increase by about 1.35%. The elasticity of household
floor area is 0.328, which is large compared to household
size. The elasticity of the ageing population ratio is signifi-
cant, at 0.171. This factor’s impact was relatively smaller
than the economic factors’ impacts, such as price and in-
come. For the temperature variables, the cooling and heat-
ing degree days were both statistically significant but
small. Therefore, it can be said that air temperature does
not have a major impact on overall residential electricity
demand. The coefficient of the heating degree day is nega-
tive, and this result is influenced by the higher usage rate
for kerosene for electricity in heating demand in cold cli-
mate areas. For example, heating demand in Hokkaido
uses more kerosene than electricity.
Subsequently, we confirm the estimation results for the

coefficients (β) of the variables that explain electricity effi-
ciency. The signs of the household size variables (βHS)
and signs of floor area variables (βFA) are negative and
positive, respectively, as expected. These results show that
as household size increases, so does efficiency. The results
also showed that as electricity efficiency improves, the
smaller the floor area is. In both models A and B, the esti-
mated coefficient of the floor area greatly exceeds the esti-
mated coefficient of household size. This result signifies
that the effects on efficiency of a decrease in residential
floor area, which has occurred alongside the migration of
people from local to agglomerated urban regions, are
greater than the effects of household size. As there are
many small detached houses and condominiums in urba-
nised cities, this result is consistent with those of previous
studies, in that urbanised cities are energy efficient. The
sign of the ageing population ratio (βAG) is negative but
statistically insignificant. This result suggests that the age-
ing Japanese society does not influence electricity savings
significantly. In other words, this result does not show the
possibility of electricity savings with ageing.
Table 3 shows the average efficiency scores for the

Japanese prefectures, obtained from the results of the
estimates. An efficiency score of 1 represents the high-
est efficiency, and the lower the score, the lower the

Table 4 Average efficiency scores and rankings

Model A Model B

Efficiency score Rank Efficiency score Rank

Hokkaido 0.57 44 0.65 25

Aomori 0.73 32 0.66 23

Iwate 0.75 27 0.65 26

Miyagi 0.83 15 0.72 14

Akita 0.80 18 0.72 11

Yamagata 0.78 22 0.63 30

Fukushima 0.79 21 0.65 24

Ibaraki 0.85 8 0.72 13

Tochigi 0.84 11 0.70 17

Gunma 0.76 24 0.62 32

Saitama 0.89 2 0.79 5

Chiba 0.88 3 0.80 4

Tokyo 0.87 7 0.81 3

Kanagawa 0.91 1 0.87 1

Niigata 0.80 20 0.66 22

Toyama 0.59 42 0.48 44

Ishikawa 0.52 46 0.43 46

Fukui 0.39 47 0.33 47

Yamanashi 0.70 34 0.57 36

Nagano 0.60 40 0.50 40

Gifu 0.76 26 0.60 34

Shizuoka 0.83 12 0.70 18

Aichi 0.84 10 0.71 16

Mie 0.75 29 0.63 31

Shiga 0.65 37 0.50 41

Kyoto 0.62 39 0.53 39

Osaka 0.80 19 0.68 21

Hyogo 0.82 16 0.71 15

Nara 0.77 23 0.63 29

Wakayama 0.52 45 0.46 45

Tottori 0.59 43 0.50 43

Shimane 0.63 38 0.55 37

Okayama 0.65 36 0.55 38

Hiroshima 0.73 31 0.64 27

Yamaguchi 0.75 30 0.69 19

Tokushima 0.59 41 0.50 42

Kagawa 0.68 35 0.57 35

Ehime 0.72 33 0.64 28

Kochi 0.75 28 0.69 20

Fukuoka 0.83 14 0.73 10

Saga 0.76 25 0.62 33

Nagasaki 0.83 13 0.75 9

Kumamoto 0.87 6 0.78 6

Table 4 Average efficiency scores and rankings (Continued)

Oita 0.81 17 0.72 12

Miyazaki 0.85 9 0.78 7

Kagoshima 0.88 4 0.84 2

Okinawa 0.87 5 0.76 8
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energy efficiency level is. There are no major differ-
ences in the efficiency scores measured using models A
or B. The average is 0.77 and the median 0.82 in model
A. The largest score is 0.97 and the smallest 0.14, which
suggests that there are regional differences in electricity
efficiency scores.
We now consider the regional distribution of the effi-

ciency scores for residential electricity. Table 4 shows
each prefecture’s average efficiency scores and rankings.
No major differences in rankings were seen between the
results for models A and B. The high-ranking regions in-
cluded Kanagawa, Saitama, Chiba, and Tokyo, which are
all large metropolitan areas where population has ag-
glomerated. In contrast, Fukui had the worst efficiency,
and the Hokuriku regions, including Ishikawa and To-
yama, also had poor efficiency.
In Kanagawa, Saitama, Chiba, and Tokyo, the popula-

tion is concentrated into densely inhabited districts and
people live in multi-dwelling houses, which have a lim-
ited floor area and, consequently, higher electricity effi-
ciency. Additionally, these prefectures have many single-
dwelling households with small overall household size.
This tendency signifies electricity efficiency deteriorates
because of the numerous household appliances per
household member. According to the estimation results
(Table 2), the parameter of the housing floor area (βFA)
exceeds that of household size (βHS), which suggests a
stronger impact of the floor area. In other words, the re-
sults suggest that electricity efficiency is higher in Kana-
gawa, Saitama, Chiba, and Tokyo owing to the floor
area. Otsuka and Goto [26, 27] verify that the impact of
population density on energy efficiency is high in these
regions. As in areas with high population density, there
are more multi-dwelling houses, such as condominiums
and apartments, than detached houses, our results are
consistent with their findings. On the other hand, in To-
yama, Ishikawa, and Fukui, there are many detached
houses, which have larger residential floor areas than
multi-dwelling houses. Therefore, energy waste is rela-
tively higher in these regions.
Table 5 shows the average scores for electricity efficiency

in the 1990s and 2000s. The results show two main find-
ings. First, in regions with high energy efficiency, changes
to the average scores were not observed. In other words,
regions where energy efficiency is already high simply
maintain these levels. Second, in low energy efficiency re-
gions, the average scores worsened from the 1990s to the

Table 5 Change rates (%) of average scores over time

Model A Model B

Hokkaido − 0.61 − 1.83

Aomori − 0.83 − 2.57

Iwate − 2.01 − 3.86

Miyagi − 1.37 − 3.36

Akita − 2.21 − 3.79

Yamagata − 2.35 − 4.45

Fukushima − 1.46 − 3.64

Ibaraki − 0.76 − 2.57

Tochigi − 1.20 − 3.32

Gunma − 2.00 − 4.08

Saitama − 0.30 − 1.57

Chiba − 0.38 − 1.57

Tokyo − 0.33 − 1.46

Kanagawa − 0.14 − 0.81

Niigata − 1.88 − 4.05

Toyama − 5.75 − 7.05

Ishikawa − 5.78 − 7.24

Fukui − 7.10 − 8.64

Yamanashi − 1.80 − 3.91

Nagano − 3.33 − 4.97

Gifu − 2.36 − 4.42

Shizuoka − 1.46 − 3.51

Aichi − 0.93 − 2.84

Mie − 2.06 − 3.93

Shiga − 4.26 − 5.96

Kyoto − 2.82 − 4.64

Osaka − 0.94 − 2.95

Hyogo − 1.44 − 3.28

Nara − 2.56 − 4.37

Wakayama − 4.83 − 6.04

Tottori − 5.27 − 6.47

Shimane − 4.84 − 6.06

Okayama − 4.10 − 5.58

Hiroshima − 3.18 − 4.67

Yamaguchi − 3.55 − 4.65

Tokushima − 4.25 − 5.60

Kagawa − 3.65 − 5.17

Ehime − 2.85 − 4.32

Kochi − 2.42 − 3.72

Fukuoka − 0.98 − 2.88

Saga − 3.35 − 5.21

Nagasaki − 0.94 − 2.74

Kumamoto − 0.86 − 2.65

Oita − 1.68 − 3.44

Table 5 Change rates (%) of average scores over time
(Continued)

Miyazaki − 1.11 − 2.74

Kagoshima − 0.64 − 1.76

Okinawa − 1.18 − 3.25
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2000s, indicating their efficiency did not improve. There-
fore, the results suggest that, in Japan, low energy effi-
ciency regions are not catching up with the high energy
efficiency ones, and through these increasing disparities,
nationwide energy efficiency is deteriorating.
Figure 1 shows the relationships between the regions’

detached house shares in 2013 and the change rates of
the energy efficiency scores. Overall, a downward sloping
relationship can be seen. There are many detached
houses in regions where regional efficiency scores deteri-
orated. In other words, this figure suggests that the in-
creasing number of detached houses within residential
areas may be causing electricity wastage.

Conclusions
This study measured the energy efficiency levels of resi-
dential electricity demand by analysing data on Japan’s
47 prefectures, using a combination of electricity de-
mand and stochastic frontier models. To the best of our
knowledge, this study is the first to measure efficiency
levels for residential electricity in Japan’s prefectures. For
the specification of electricity demand, price and in-
come, household size, floor area, ageing, and climate
were respectively controlled for to derive electricity en-
ergy efficiency. The efficiency level tends to depend on
the economic and social structures of the region, whose
influences were controlled for when deriving the effi-
ciency scores, thus resulting in a more accurate index.

The results of our analysis confirm the importance of
household dwelling types for the electricity energy effi-
ciency. The findings suggest that household size and
floor area are key to electricity savings. Going beyond
the nuclear family and increasing the number of house-
hold members, the possibility of sharing home appli-
ances increases. Large families may have many
household electrical appliances and higher electricity
consumption, but the number of kitchen appliances and
the hot water supply should be constant. In this case,
household appliance usage per household member de-
creases and, thus, per-capita electricity consumption
may decrease (household scale economies). Further-
more, by living in a multi-dwelling house with a small
floor area, energy intensity can improve, which means
the energy efficiency level will be high. There are more
multi-dwelling houses in cities than rural areas, and
thus, the potential for energy efficiency improvement is
high in cities. Therefore, promoting living in urban areas
will result in electricity savings.
In conclusion, promoting living in urban areas by

forming urbanised cities in each region would seem to
be an effective strategy for increasing electricity energy
efficiency. This policy is known to increase the product-
ivity of regional economies through agglomeration econ-
omies, as well as environmental efficiency [2, 37]. The
results of our analysis show that, to achieve both higher
productivity and energy efficiency, promoting residence

Fig. 1 Relationship between detached house shares and efficiency score changes
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in areas where the population has agglomerated and
forming multi-polarisation-type national spatial develop-
ments is vital. In Japan, a policy on constructing com-
pact cities within local areas to increase population
concentration is being discussed. Consequently, the im-
pact of such a policy on the relationship between house-
hold dwelling types and energy consumption should be
investigated in further studies.

Endnotes
1Lin and Wang [18] consider two factors—industry

concentration and ownership structure—as the determi-
nants of energy efficiency levels.

2More advanced SFA models are proposed by Colombi
et al. [38], Kumbhakar et al. [39], Tsionas and Kumbha-
kar [40], and Filippini and Greene [41]. For example, the
model proposed by Colombi et al. [38] can distinguish
between short- and long-run efficiency levels. However,
with such a model, we cannot analyse the determinants
of the efficiency levels in a single-stage procedure.

3This study is unable to consider the stock of household
appliances owing to data limitations. Thus, we instead as-
sume that the stock of household appliances is proportional
to household size, and the influence of the stock of home
appliances is explained by household size. However, we must
be cautious about assuming that this relationship is implicit.
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