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Abstract

The transformation of the energy system to a renewable one is crucial to enable sustainable development for
mankind. The integration of high shares of renewable energy sources (RES) in the energy matrix is, however, a
major challenge due to the low energy density per area unit and the stochastic temporal patterns in which RES are
available. Distributed generation for energy supply becomes necessary to overcome this challenge, but it sets new
pressures on the use of space. To optimize the use of space, spatial planning and energy planning have to be
integrated, and suitable tools to support this integrated planning process are fundamental.
Spatiotemporal modelling of RES is an emerging research field that aims at supporting and improving the planning
process of energy systems with high shares of RES. This paper contributes to this field by reviewing latest
developments and proposing models and tools for planning distributed energy systems for municipalities. The
models provide estimations of the potentials of fluctuating RES technologies and energy demand in high
spatiotemporal resolutions, and the planning tools serve to configure energy systems of multiple technologies that
are customized for the local energy demand. Case studies that test the spatiotemporal models and their
transferability were evaluated to determine the advantages of using these instead of merely spatial models for
planning municipality-wide RES-based energy systems.
Spatiotemporal models allow a more detailed estimation of RES potentials and serve to find not only optimal
locations but also optimal sizes for individual RES plants. While the potential of variable RES based on yearly energy
generation values can be considerably larger than the energy demand, only a fraction of it can be deployed
without compromising the quality and reliability of the local energy supply system. Furthermore, when
spatiotemporal models are used, it can be seen that technological diversity is beneficial for the supply quality.
Similarly, the advantages and limits of the deployment of storage systems and of combinations of RES-based
technologies to cover the local demand were determined and evaluated. Finally, the results from the analyses
provide sufficient information to define road maps of installations deployment to achieve desired RES penetration
objectives.

Keywords: Spatiotemporal modelling, Integrated spatial and energy planning, Renewable energies, Open source
GIS, Virtual power plants

Background
The transformation of the energy system has become a
global affair that is already generating important eco-
nomical, societal and technical changes. Countries
worldwide are setting ambitious goals to replace their
fossil-based energy matrix by a renewable one. Several of
the renewable energy sources (RES) promotion and

adoption initiatives of these countries present significant
and continuous progress. However, the medium- and
long-term objectives of high levels of RES [1] can only
be achieved if there is a transformation from the current
centralized energy generation paradigm towards distrib-
uted generation [2–4]. Such a structural transformation
has started to take place in countries such as Germany
where the actual installed RES capacity is distributed in
around 1.5 million installations [5]. This figure contrasts
with the 730 operational conventional power plants with
nominal capacities above 10 MW that are responsible
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for supplying the largest part of the country’s electricity
demand [6].
Consequently, the decentralization of the energy sys-

tem sets new pressures on the use of space and on ad-
ministrative units such as districts and municipalities.
Space becomes a precious object not only for food
provision, for environmental services and for residential,
commercial, industrial and transport uses but also for
the energy supply infrastructure [7]. Moreover, the deci-
sions about infrastructure no longer concern isolated in-
stallations that are as distant as possible to human
settlements, but new infrastructure is to be installed dir-
ectly in buildings and close to populated areas. The
decentralization of the energy system therefore entails a
radical transformation of cityscapes and landscapes [8].
In order to overcome the issues with space usage and to
accomplish acceptance and understanding from society
to implement the necessary changes, relatively small ad-
ministrative units such as districts and municipalities
have to take an active role in the design of the new en-
ergy system [9, 10]. Furthermore, since the technical
solution cannot be separated from economic, environ-
mental, social, political and spatial concerns [11], the
conception of a decentralized RES-based energy system
requires the coupling of spatial and energy planning [8].
Geographic information systems (GIS) have shown to

be valuable tools to support both energy and spatial
planning, but these must be further developed in order
to assist the conception of a RES-based energy system.
GIS have become indispensable to assess RES potentials
and local impacts [12], as well as to evaluate RES adop-
tion by considering technical, environmental, social, eco-
nomic and political criteria [13]. GIS-based studies and
tools for the assessment of solar, wind, biomass, wave
and geothermal energy potentials in a multitude of loca-
tions around the world populate RES-related scientific
literature of the last decade [12–14]. However, the con-
sideration of the local energy demand, the constraints
given by the grid and the spatially explicit examination
of the temporal variability of RES, such as wind and
solar energy, are only starting to appear in the current
research agenda dealing with the conception of energy
systems for municipalities. These aspects are vital if the
intention is to conceive energy systems that ensure reli-
able supply and economic feasibility.
The integration of high shares of technologies such as

photovoltaics and wind turbines in the energy matrix is
a challenge. Inappropriate planning for the integration
of such technologies would lead to lower revenues, deg-
radation of the quality of supply, and increased infra-
structure requirements related to the grid, storage, and
back-up systems [15–18]. The design of energy supply
systems such as virtual power plants (understood in Eur-
ope as a system resulting from the aggregation of

RES-based energy generation plants to supply a desired
demand in a reliable manner [4]) or the assessment of
economic promotion mechanisms for RES, which de-
pend on the match between supply and demand, cannot
be supported with mere GIS-based spatial models.
Therefore, the full integration of the temporal compo-
nent in existing GIS-based analyses is a necessary fur-
ther step [19].
In this paper, we review GIS-based spatial and spatio-

temporal models and methods for the estimation of RES
potentials as well as for the determination of energy de-
mand. Based on this review, we present a methodology
that integrates GIS-based RES potential assessment pro-
cedures with models for the estimation of energy gener-
ation and consumption profiles in a high temporal
resolution. This new method should overcome deficien-
cies identified in previous approaches and contribute to
decision making in integrated spatial and energy plan-
ning at the municipal scale. The research was carried
out in the Doctoral project “Spatiotemporal modelling
for renewable distributed energy generation planning for
municipalities” and represents the framework thesis of
the cumulative dissertation.
This document is structured as follows: derived from

an analysis of the state of the art of spatial and spatio-
temporal modelling for planning renewable energy sys-
tems in the “Theory framing and state of the art”
section, a new spatiotemporal modelling and analysis ap-
proach is presented in the “Methodology” section. The
results of multiple case studies as well as the strengths
and weaknesses of the presented methodology are dis-
cussed in the “Results and discussion” section, and the
“Conclusions” section draws conclusions.

Theory framing and state of the art
Decision making for the energy transition
In consonance with Fürst and Scholles [20], decision
making in planning processes means connecting the fac-
tual and the value level, which is according to Scharpf
[21] influenced by power relations and actor constella-
tions. Furthermore, decision making concerning the en-
ergy transition impacts all levels of government and has
to lead to a consistent action of private households and
enterprises. As Stoeglehner and Narodoslawsky [22]
point out, planning for the energy transition is inspired
by climate protection objectives of global environmental
policy; is transferred into environmental policies, energy
policies, and economic policies on the national and re-
gional level; and ends up in decisions of households and
enterprises. Those are normally driven by social criteria
(like prestige), economic criteria (like affordability or
lowest price) and, only partly if at all, by environmental
issues. Yet, all decisions on all levels, in accordance with
different motives, have to point in the same direction.
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This is already challenging for inter-sectoral policy-
making and administrative decisions, but even more
complex when private household and enterprise based
implementation of single measures is required. In order
to fulfil this task democratically and de-centralized, not
only governmental policies are needed, but a change in
behavioural and investment patterns of numerous and
highly diverse actors and stakeholders concerning their
specific energy demand and supply is indispensable.
Therefore, planning and implementing the energy transi-
tion can be perceived as a huge learning task for soci-
eties, which corresponds to the concept of spatial energy
resilience [23, 24], where the resilience is not only de-
fined as a set of physical criteria an energy system
should fulfil, but where adaptive capacity and ability to
learn are major societal criteria to build resilient renew-
able energy systems.
So far, there is no historic showcase that demonstrates

how to implement a global environmental policy such as
the energy transition on a regional scale. Thus, uncer-
tainty is high: (1) technological development for energy
generation, distribution and storage is still in progress,
and not all technologies needed for the energy transition
are already available; (2) economic framework conditions
and price frameworks for a fully renewable energy sys-
tem are hardly predictable; (3) how the integration of
decentralized and central technologies and infrastructure
networks might work is not established neither techno-
logically nor organisationally or economically; (4) decen-
tral decision making by a multitude of actors means that
the optimal own decision largely depends on the deci-
sions of others and optimization takes place when deci-
sions are synchronized; (5) the optimal renewable energy
technology investment largely depends on the temporal
energy demand patterns and temporal resource availabil-
ity in a certain spatial context, especially a municipality
or region. Still, with the available technologies and under
the existing economic and regulatory frameworks, a lot
of measures can be taken towards the energy transition.
Such limitations call for a new generation of decision

making models and tools that increase the ability of local
and regional communities and decision makers to learn
about these complex issues. On the one hand, this includes
making system interrelations between spatial structures, en-
ergy demand, RES and technological energy supply options
visible. On the other hand, learning about values, attitudes
and objectives and the perceived impacts of planned mea-
sures should be supported, so that learning loops between
visions, measures and their impacts allow for decisions pro-
moting the energy turn [8].
Such decision making models are especially important

for optimizing decentralized energy systems in certain
spatial contexts by connecting different infrastructure
systems with each other in order to optimize energy use,

energy efficiency, renewable energy supply and storage
capacity. For instance, electricity from volatile renewable
energy sources like wind and PV power can be used to
generate heat and cold with heat pumps [25] and distrib-
ute them in district heating and cooling grids, load bat-
teries of electric vehicles or technical installations or
feed it in larger electricity grids if available. The options
for such optimisations are to a large extent determined
by the local and regional spatial structures such as the
presence of different land uses and their density, e.g. of
residential, commercial, industrial land or public amen-
ities as well as the distance and availability of transport
infrastructures and energy grids as well as the temporal
patterns of energy demand and supply. In order to sup-
port this optimisation, spatiotemporal modelling has be-
come an emerging research field in the last 10 years. In
the next sub-sections, a comprehensive literature review
is presented as basis for proposing a holistic decision
support method to operationalize spatiotemporal model-
ling for the optimisation of energy systems on a munici-
pal scale.

State of the art
In order to identify GIS-based spatial models and
methods for the estimation of RES potentials and the de-
termination of energy demand, a comprehensive litera-
ture review has been conducted. This review categorises
studies in three subsequent levels. Firstly, methodologies
for assessing RES-based systems and estimating energy
demand are divided between merely spatial and spatio-
temporal approaches. Secondly, models for RES-based
systems are classified as far as possible depending on the
type of RES, and demand models are classified subject to
the type of energy. Thirdly, models and methodologies
for the RES types that constitute the focus of this paper
(wind and solar power) and for energy demand are in-
troduced following the schema shown in Fig. 1. These
models span from the continental to the neighbourhood
scale in spatial resolutions ranging from coarse (several
kilometre) to very high (below a metre).

GIS and renewable energies
GIS have become a common tool to evaluate potentials
of all types of renewable energy sources and combina-
tions of them. Already in the early 1990s, GIS were start-
ing to be recognized as important tools for regional
planning related to RES [26]. Assessments of biomass,
wind and photovoltaic energy generation potential con-
ducted with GIS started appearing during these years
[27–31]. Furthermore, the number of studies has rapidly
increased in the last 10 years. As presented in Fig. 2, the
amount of documents indexed in Scopus (database
widely used in scientometric analysis, also in the case of
GIS science [32]) that included GIS and “renewable
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energies” in the title, abstract or the keywords grew from
one or two manuscripts per year in the 1990s to 114 in
2017 and a cumulative total of 816 publications by the
end of that year. Similar trends are observable when
combining GIS with “biomass energy”, “wind energy”
and “solar energy”. The latter combination is the largest
one with 620 publications in total and also the only one
with more than one publication prior to 1990. For in-
stance, in 1986, Ritter [33] already proposed a simplified
algorithm to calculate slopes and aspects from digital
elevation models (DEMs), which contributed to facilitate
calculations of solar radiation in raster data sets. Further

RES such as geothermal or tidal energy are also widely
studied with GIS approaches (see [12]), but these are be-
yond the scope of this work.

GIS and biomass Estimations of biomass are highly di-
verse in terms of information source and the type of bio-
mass that are investigated. Information sources include
satellite imagery [34, 35], inventory data [36, 37], Light
Detection and Ranging (LiDAR) and other remote sens-
ing methods [38–41]. These are used in assessments of
dry biomass, wet biomass and biogas, which normally
aim at finding optimal locations for biomass-based en-
ergy generation plants. Studies of dry biomass include
wood from forests, agricultural scraps and industrial and
urban untreated wood residues [42–44], as well as
cotton-stalk, switchgrass and further short rotation
woody crops [45–47]. The sources of wet biomass and
biogas include non-woody biomass [48] and livestock
units [49, 50]. Since the dispatch from biomass-based
energy generation plants is controllable, research em-
phasis has been conferred to the optimal location and
sizing of these energy generation plants based on eco-
nomic factors and the proximity to biomass sources.
The definition of these optimal locations relies mainly
on the spatial (and not the temporal) availability of bio-
mass and has been largely performed with mathematical
programming and agent-based modelling approaches
[51–55].

GIS-based spatial studies of fluctuating renewable
energy sources Analogously to biomass-related studies,
there are also multiple methodologies to determine, map
and assess wind and solar energy resources. Established
data sources include in situ measurements combined
with statistical methods, satellite imagery, numerical

Fig. 1 Study classification: schematic representation of the
classification of studies based on the spatial coverage and the
corresponding spatial resolutions

Fig. 2 GIS and renewable energies: search results in Scopus for articles including the word GIS in combination with either renewable energy,
biomass energy, wind energy or solar energy in title, abstract or keywords
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weather prediction models and combinations of them
[12, 56]. These data, which are available in high tem-
poral resolution, are usually summarized into average
wind speeds and cumulative global solar irradiation per
year or per month in order to generate wind and solar
cadastres, respectively. Such presentations of informa-
tion are ideal to determine hot spots of resource avail-
ability and to select the best locations for installations
that generate as much energy as possible. When these
resource availability maps are integrated in GIS, it is
possible to combine the maps with multiple technical,
economical and regulatory parameters in order to esti-
mate deployment potentials of PV installations [57–61]
or wind parks [62–69].

Solar energy resources, photovoltaic and solar ther-
mal systems potential Concerning merely spatial as-
sessments of solar energy, GIS have been extensively
used to assess rooftop-mounted and free standing solar
energy installations. Freitas et al. [70] reviewed 21 tools
that serve to model solar energy potential in the urban
environment. Tools such as the solar analyst of the pro-
prietary GIS software ArcGIS [71] or r.sun of the
open-source GRASS-GIS platform [72] have been uti-
lized to develop a large number of cadastres for photo-
voltaic and solar thermal systems for locations all
around the globe [70, 73]. These tools serve to calculate
theoretical solar radiation potentials based on geo-
graphic and geometric parameters such as latitude, lon-
gitude, altitude, aspect and slope of surfaces and further
basic parameters to account for the atmosphere [74, 75].
This theoretical calculation corresponds to the solar ra-
diation under clear-sky conditions. In order to calculate
solar radiation estimations under real-sky conditions,
the tools include the possibility of integrating measured
data to indirectly consider clouds and improve the solar
irradiation prediction. The calculation of the effect of
shadowing of near and distant objects using DEMs is
also possible, and one of the major assets of GIS-based
calculation methods, particularly when studying moun-
tainous territories [76] or urban areas [77], in compari-
son to studies based solely on satellite imagery. For
instance, Martínez-Durbán et al. [78], Bosch et al. [79],
Ruiz-Arias et al. [80], Haurant et al. [81] and Ramirez
Camargo and Dorner [82] have shown that significant im-
provements can be achieved in the estimation of solar re-
sources when the resolution of satellite images is increased
and shadowing is considered using high-resolution DEMs.
There are not only multiple GIS tools to support as-

sessments of solar energy resources but there is also a
wide range of methodologies that have been used to ap-
proach the topic for diverse study areas in different
spatial resolutions. At continental and country scale, it is
possible to find studies with spatial resolutions that

range from several square kilometres to 90 m × 90 m.
Šúri et al. [57], pioneers of the uses of GIS for the gener-
ation of continent-wide solar radiation, combined r.sun
with measurements of 566 ground meteorological sta-
tions to generate a database of yearly and monthly solar
radiation maps with a spatial resolution of 1 km × 1 km
for Europe. These data, together with temperature data,
served to estimate PV electricity generation for every
country in the continent. The resulting PV potential
database was made available through the PV-GIS Inter-
net platform of the European Joint Research Centre [83].
Almost a decade later, due to massive improvements in
data availability, Huld and Amillo [84] were able to gen-
erate a database of PV potential maps for Eurasia and
Africa. They used satellite imagery-derived solar radi-
ation maps, instead of in situ measurements (the stations
net is not as dense as in Europe), to calculate real-sky
solar irradiance from clear-sky GIS-derived solar irradi-
ance maps. This database includes more detail in the
calculation of PV potential by accounting for the effects
of temperature and wind speeds, which were obtained
from reanalysis data sets [84]. At the country level, ex-
amples include an ArcGIS solar analyst-supported po-
tential estimation for multiple Concentrated Solar Power
(CSP) technologies for Oman in 3 km × 3 km spatial
resolution [85]; a technical and economical assessment
of the potential of rooftop PV and solar hot water sys-
tems (SHW) for every municipality in Spain, which was
performed using in situ data and geostatistics [86, 87];
the monthly and yearly solar radiation maps with prov-
ince resolution for Indonesia generated with neuronal
networks and ArcGIS [88]; the solar radiation contour
maps for Argentina produced with geostatistical
methods [89]; and the Chilean solar explorer [90]. The
last one is a platform similar to the European PV-GIS,
but in this case, satellite imagery-derived solar irradiance
maps have been used instead of in situ measurements to
calculate real-sky conditions. This 10 years younger on-
line platform, which serves to interactively estimate PV
electricity yield potential, has also a much higher
spatial resolution (90 m × 90 m) than its European
counterpart [90].
While at continental and country level, the spatial

resolution of the used solar radiation maps does not ex-
ceed 90 m × 90 m and the standard is a resolution lower
than 1 km × 1 km; at regional and district scale, the reso-
lution of the underlying spatial data can be classified as
coarse if it is around 90 m × 90 m. The spatial resolution
at these scales can be below 1 m × 1 m. High resolutions
are achieved by either estimating suitable areas for the
deployment of solar systems in a high resolution, which
are combined with solar radiation data in coarser reso-
lution, or by calculating solar radiation itself in a high
spatial resolution.

Ramirez Camargo and Stoeglehner Energy, Sustainability and Society  (2018) 8:32 Page 5 of 29



The first alternative for generating high-resolution
solar radiation maps is usually performed with building
footprint vector data or high-resolution digital ortho-
photos (DOPs) combined with image classification and
object recognition methodologies. Wiginton et al. [59]
are pioneers in the use of high-resolution DOP for the
quantification of rooftop suitable areas for the deploy-
ment of PV systems. They used both building footprints
vector data and a feature analyst extraction software on
20 cm × 20 cm resolution DOPs to identify potential
rooftop areas suitable for PV deployment in south-east
Ontario, Canada. These areas were reduced by including
factors such as shading, other uses (ventilation, heating/
air conditioning, dormers or chimneys) and orientation.
The PV energy output was calculated for different tech-
nologies considering the yearly cumulated average solar
radiation for every studied municipality as the driving
factor. Consequently, the final results were presented for
the municipal scale. Bergamasco and Asirani [91]
followed a similar approach for calculating PV deploy-
ment potential for Turin in Italy. They used building
footprints, high-resolution DOPs and an image recogni-
tion algorithm to identify suitable rooftop areas, but in-
stead of average solar irradiation data for the whole
municipality, they utilized solar irradiation data in 1 km ×
1 km resolution available in PV-GIS. Bergamasco and
Asirani [92] have also already calculated the potential of
different PV technologies for the Piedmont region in
north-western Italy using PV-GIS data. For this larger
region, they used only cadastral data and no
high-resolution DOPs. Their final PV potential results
are, as in [59], cumulated to the municipal scale. Further
examples of a similar approach include the work of
Schallenberg-Rodríguez [93], where the
techno-economical PV potential for the Canary Islands
was calculated, and the work of Sánchez-Lozano et al.
[94] that combined cadastral data (not for every building
but for every plot), solar radiation data, average
temperature and environmental, geomorphological and
location factors in a multi-criteria decision making
method to determine optimal locations for PV deploy-
ment in the area of Cartagena in Murcia, Spain. One
step forward of the methodology of Wiginton et al. [59]
is proposed by Nguyen and Pearce [95]. They analysed
PV potential for Kingston in Ontario, Canada, at grid
feeder resolution by also considering connectivity re-
strictions of the grid. In order to do that, they employed
spatial data of the electric grid and a more detailed
simulation of the PV energy yield. The latter was per-
formed with the proprietary software PVSyst. Jo and
Otanicar [96] proposed a related and more detailed, but
also more restricted methodology to estimate PV energy
yield of buildings in the metropolitan area of Phoenix,
USA. They used multi-spectral and panchromatic

images from the QuickBird satellite with a resolution of
0.6 m × 0.6 m and object-based image identification
(OBIA) to identify potential suitable surfaces for PV.
These potential suitable areas were reduced depending
on shadowing, which was calculated with a 3D model of
the buildings and Google’s SketchUp. For the estimation
of the PV yield, they used the RETScreen software,
which works with a mix of in situ-measured and satellite
imagery-derived solar radiation data. However, they
made the detailed calculation only for one specific build-
ing type and extrapolated it to all considered buildings
of the same type in the study area. This fact limits the
use of the methodology to only buildings with similar
use (commercial and governmental) and architectural
characteristics (flat roofs) [96].
The second alternative for generating high-resolution

solar radiation maps, which consist of the direct estima-
tion of solar radiation in a high spatial resolution, relies
mainly on LiDAR data, photogrammetric point clouds
and buildings footprint vector data with height informa-
tion for the generation of DEMs of high spatial reso-
lution. These DEMs, either in form of digital terrain
models (DTM) or digital surface models (DSM), are the
basis to generate solar radiation maps using GIS tools.
Examples can be found for locations all around the
world. For instance, Kryza et al. [97] presented a remote
location example by using r.sun and a 10 m × 10 m
DEM to estimate solar radiation in Wedel Jarlsberg
Land, Svalbard, Norway (North Pole). Examples of the
estimation of active solar energy systems potential at the
regional and municipal level that show the evolution in
terms of methodologies and spatial resolution include:
Firstly, the work of Sun et al. [98] for the province of Fu-
jian in China. They generate monthly and yearly cumu-
lated maps of clear-sky solar radiation using a DEM of
90 m × 90 m resolution and the ArcGIS solar analyst.
This theoretical potential is constrained by geographical,
technical and economical parameters. Given that they
examined a relatively large area and not all the consid-
ered parameters were available in the same spatial reso-
lution, they reduced the resolution of the results to
5 km × 5 km. Ludwig et al. [99] used LiDAR data to gen-
erate a 1 m × 1 m DSM, which was combined with
building footprints to provide a detailed rooftop PV po-
tential cadastre for the City of Osnabruck in Germany.
These authors implemented their own shadowing and
radiation algorithm and considered homogeneous parts
of the rooftops in terms of yearly cumulated solar irradi-
ation as suitable surfaces for PV deployment [99]. They
further reduced the amount of potential areas by exclud-
ing surfaces with a size below the threshold of typically
profitable PV installations [99]. Similarly, Kodysh et al.
[100] employed LiDAR to generate a 1 m × 1 m DSM
for the Knox County, Tennessee, USA. They used this
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DSM as input for the ArcGIS solar analyst and calcu-
lated monthly average days of solar irradiation to de-
velop a cadastre of total yearly solar irradiation. These
authors dedicate a significant part of their methodology
to the issues of working with a large data set (the 1 m ×
1 m DSM of the Knox County had a size of more than
10 GB). Their solutions were to divide the study area in
multiple tiles to be handled separately for the calculation
and then to consider only the buildings’ roofs and a buf-
fer of 25 m for the calculation of shadowing and solar ir-
radiation. Both Hofierka and Kaňuk [77] and La
Gennusa et al. [101] combined a DTM of relatively low
resolution with a vector data set of the building foot-
prints with height information to generate a DEM of
1 m × 1 m resolution for Bardejov (Slovakia) and Pa-
lermo (Italy), respectively. Hofierka and Kaňuk [77] used
r.sun with PV-GIS data to calculate real-sky solar radi-
ation and PV potential for the study area. They per-
formed a coarse calculation and estimated that PV could
cover 2/3 of the city’s electricity demand. La Gennusa et
al. [101] made emphasis in the calculation of suitable
roof surfaces for the installation of PV and solar thermal
systems. They made assumptions about the tilts of the
roofs (since in the generated DEM all roofs are flat) and
estimated shadowing in order to reduce the suitable roof
areas [101]. The potential energy yield of the remaining
areas was calculated using data from the PV-GIS plat-
form [101]. Brito et al. [102] combined LiDAR data and
photogrammetric methods to generate a 1 m × 1 m
DSM of a part of Carnaxide, Oeiras, Portugal. They per-
formed the clear-sky solar radiation calculation with
ArcGIS solar analyst and approximated real-sky condi-
tions with PV-GIS data. They calculated rooftop PV en-
ergy generation potential using a simple formula based
on the total energy irradiation in every pixel and a factor
to account for typical PV system efficiency [102].
Nguyen and Pearce [103] appealed to LiDAR data of a
part of downtown Kingston, Ontario, Canada (with 100
buildings) to generate a 0.55 m × 0.55 m DSM of the
roofs. These authors tested the capability of r.sun to deal
with different levels of complexity. They used r.horizon
to speed up the solar radiation calculation and evaluated
the differences in the results due to DEM resolution,
presence or absence of shadows and temporal granular-
ity of the estimation. Agugiaro et al. [104] examined the
solar radiation potential and created a WebGIS platform
for evaluating PV potential of a 2.5 km × 2.5 km part of
the Alpine city of Trento (Italy). They used a
LiDAR-derived 2 m × 2 m DTM and 1 m × 1 m DSM to-
gether with local imagery and advanced automated
image matching methods to generate a 50 cm × 50 cm
resolution DSM of the study area. r.sun was employed to
calculate average yearly values of global irradiation. In
their proposed methodology, the first step was to

calculate clear-sky daily sums of solar irradiation and
then to adjust the values to real-sky conditions with the
aid of 7 years of measurements obtained from a pyran-
ometer installed on a building in the study area.
One of the major limitations for calculating high

spatial resolution solar radiation maps is the required
computational capacity. The concern was made evident
already in studies [99, 100, 103, 104], where the study
area was constrained to few square kilometres, or the
calculation of solar radiation was performed only for
specific parts of the study area, or the input DEMs were
divided in tiles, or the temporal granularity of the calcu-
lation of solar irradiance was kept coarse. Lukač and
Žalik [105] showed that one alternative to deal with this
issue is the use of general purpose programming on
graphic processing units (GPGPU) to perform the solar
radiation calculation. They implement a solar radiation
estimation algorithm to be run on a graphic processing
unit (GPU) and quantify its advantages against single
central processing unit (CPU), and parallel multi-CPU
implementations. For the quantification, they used
LiDAR-based 1 m × 1 m DSMs of a 0.73 km2 area of
Pekre and a 1.27 km2 part of Maribor city in Slovenia.
This was employed together with a lower resolution
DTM (25 m × 25 m) for 315 km2 of the territory around
the study areas in order to account for the shadowing of
distant objects. In order to calculate real-sky values, they
utilized pyranometer records of one decade. The same
team continued working with this approach and the
study area of Maribor. In [106], they extended the meth-
odology to select surfaces of the roofs that are best
suited for PV systems. In [107], these authors improved
the PV energy yield estimation by including non-linear
efficiencies for the PV modules and inverters. A similar
approach is followed by Huang et al. [108]. They imple-
mented the SHORTWAVE-C algorithm using GPGPU
to estimate rooftop solar radiation potential for a study
area in Shanghai, China.
Another field of development that has gained attention

in the last years is the calculation of solar radiation and
PV potential on building facades. This however requires
even higher computational capacities and high-quality
3D data sets that are not widely available [70]. First stud-
ies in this field include Redweik et al. [109] who de-
scribed a model to calculate solar radiation on rooftops
and facades based on DSMs constructed with LiDAR
data. The authors conducted a case study with a 1 m ×
1 m resolution DSM of the campus of the University of
Lisbon, Portugal. Posteriorly, the same authors presented
the integration of these data in a 3D building model in a
GIS for optimized querying of PV energy generation po-
tential of individual surfaces (rooftops or facades) and
buildings [110]. Jakubiec and Reinhart [111] proposed a
methodology where a detailed Daysim reverse raytracing
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simulation is performed for every single surface of a 3D
model that is generated from LiDAR. The solar irradi-
ance data is then used in a PV model that considers am-
bient and surface temperature in addition to typical
technical factors such as PV panels and inverter efficien-
cies. They tested the methodology with data from
Cambridge Massachusetts and made summarized infor-
mation available through a public WebGIS tool. This is
probably the most detailed and precise photovoltaic po-
tential map of a city available today. However, the re-
quired computational capacities are considerably
higher than the ones that would be necessary if
other GIS-based tools such as ArcGIS solar analyst
or r.sun would have been used to estimate the solar
radiation [111].

Wind speeds, energy and wind parks GIS have been
also largely used in the planning process of wind parks.
Average wind speed, dominant wind direction, slope of
the terrain, accessibility (appropriate roads for the trans-
port of infrastructure) and visual impact are parameters
that have been usually examined using GIS to construct
wind atlases and to determine optimal locations for wind
parks [12]. Studies variate, among others, in spatial
coverage, spatial resolution, the type of technology that
is assumed, and the methodology and data source for
the estimation of wind availability. Data sources com-
prise in situ measurements from meteorological towers,
reanalysis data sets and satellite imagery (the latter one
for off-shore wind potential estimation). While in situ
measurements are considered the most accurate data
sources, their spatial coverage is limited. Conversely, re-
analysis data have global coverage but they are not ne-
cessarily an accurate source for punctual wind resources
estimations [112] (the spatial resolution is still above
several kilometres).
Methodologies for generating wind atlases in the de-

sired resolution and coverage include geostatistical
methods, computational fluid dynamic models, numer-
ical atmospheric mesoscale models and combinations of
them. For instance, Hoogwijk et al. [113] estimated glo-
bal technical and economical wind energy potentials in a
0.5° × 0.5° spatial resolution. These authors consecutively
reduce the theoretical wind energy generation potential
per pixel by applying geographical (wind regime, alti-
tude, urban areas, land-use), technical (extrapolation of
the wind speed to hub height, amount of full-load hours)
and economic (regional cost-supply curves) restrictions.
They determined the wind regime using the average
wind speed maps generated by the Climate Research
Unit, which were generated using geostatistics and in
situ measurements [114]. Himri et al. [115] evaluated
the availability of wind resources in terms of average
wind speed, wind power density, predominant wind

direction frequency distribution and Weibull distribution
parameters for Algeria by using geostatistics and 3 years
of in situ measurements data. An example that shows
the evolution of the methodologies is the case of the
Swiss wind atlas. The first Swiss wind atlas constructed
in 2004 relied on in situ measurements and geostatistics
while the last version was calculated with the Computa-
tional Fluid Dynamics - Modell implemented in the soft-
ware WindSim [112]. This allowed to generate monthly
and yearly maps of average wind speed with a spatial
resolution of 100 m × 100 m for five different heights
(50m, 75m, 100m, 125m and 150m) and a higher accur-
acy compared with the previous Swiss wind atlas [112].
Nowadays, such high-resolution atlases can be found for
locations all around the globe and are generated also
with alternative methodologies such as atmospheric
mesoscale models. Examples include the 3 km × 3 km
wind atlas of Thailand [67] and the British Islands [116],
the 100 m × 100 m Austrian [117] and Bavarian [118]
wind maps and the microscale 90 m × 90 m wind map of
the Phaluay Island (Thailand) [68]. In all these cases, re-
analysis data such as the ERA-40 [119] or the
ERA-INTERIM [120] of the European Centre for
Medium-Range Weather Forecast (ECMWF) or the Cli-
mate Forecast System Reanalysis (CFSR) of the National
Centres for Environmental Prediction (NCEP) [121] are
brought to a higher spatial resolution using atmospheric
models such as the Karlsruhe Atmospheric Mesoscale
Model (KAMM) or the Weather Research and Forecast-
ing model (WRF).

GIS and energy demand
GIS-based estimations of energy demand for electricity,
heating, cooling and warm water can be traced back al-
most two decades, and the number of studies had in-
creased considerably in the last years. A Scopus search
for the words GIS combined with “energy demand” in
the title, abstract and keywords delivered 611 results that
are distributed between 1975 (1) and 2017 (85). Due to
the high energy demand and the corresponding high po-
tential for energy savings, the residential building sector
has attracted special attention. Already in 2009, Swan
and Ugursal [122] and in 2010 Kavgic et al. [123]
reviewed more than a hundred original research articles
(when counting the references of both publications and
avoiding repetitions) dedicated to the estimation of en-
ergy demand, mainly for heating, for the residential
building sector. While a handful of these articles used
GIS for data retrieving, management and visualization,
Reinhart and Cerezo Davila [124] showed that it is
mainly in the last years that GIS became an essential
tool to estimate energy demand of neighbourhoods, cit-
ies and municipalities.
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Similar to the GIS-based studies of renewable energies,
GIS-based studies of energy demand are available for
different types of energy in resolutions that range from
continental to neighbourhood scale.

Continental to regional scale One of the first studies
that could be found for a large area is the GIS-based es-
timation of energy demand for water heating by Voivon-
tas et al. [125]. This study was performed as part of an
economic assessment of solar water heating systems for
the residential sector at the municipal level for Greece.
A case study that has received considerable attention is
the Danish building stock. For instance, Möller and
Lund [126] generated a heat atlas to study the potential
of expanding district heating networks in this country.
They used the national register of buildings and dwell-
ings, address locations of every building and 175 build-
ing typologies (25 sub-types and 7 age classes) as input
for a physical heat demand model to calculate yearly en-
ergy demand for heating and warm water for the whole
Danish building stock. The atlas is the input for the en-
ergy system analysis model (EnergyPLAN) to evaluate
the potential of district heating for replacing other heat
energy generation technologies. Petrovic and Karlsson
[127] also calculated yearly energy demand for heating
and warm water of the Danish building stock. They used
a physical model based on monthly calculations of heat-
ing days, heat losses and heat gains together with a typ-
ology approach that divides the Danish building stock in
360 groups. The yearly energy demand estimation is per-
formed for every building and served as input to evalu-
ate heat saving energy potentials at the national level.
In contrast to the use of physical bottom-up models

for the Danish case, where the building stock is relatively
small and there is a reliable building register, the studies
for larger building stocks with unreliable or inexistent
building registers tend to rely on statistical top-down ap-
proaches. Gils et al. [128] used statistical data to calcu-
late energy demand for heating and hot water of the US
building stock (residential and commercial) in order to
evaluate the possible role of district heating in the coun-
try until the year 2030. They determined the average an-
nual per-capita heat demand on the basis of statistics
and projections of the total final energy demand. These
values were distributed through the country using popu-
lation and land use data. The results were summarized
to state and census region levels for the district heating
potential analysis. Connolly et al. [129] employed a pro-
cedure similar to the one of Gils et al. [128] to calculate
heat demand per capita in the case of the EU. This de-
mand was spatially distributed using the GEOSTAT
European population raster data set with 1 km × 1 km
spatial resolution and adjusted to local climatic condi-
tions using the European Heating Index (EHI), which

has the same resolution as the third level European ad-
ministrative units (NUTS3). These authors used the esti-
mated energy demand data to appraise the potential of
district heating and heat savings to decarbonise the en-
ergy system of the EU.
There are also GIS-supported studies at country and

continental levels that focus on electricity and energy
demand for cooling. Research related to electricity de-
mand usually relies on statistical approaches to spatially
distribute country-wide energy demand data in munici-
palities or regions. Such studies are nowadays common
for countries with low level of electrification where the
interest is to compare scenarios of grid extension against
the installation of off-grid systems [130, 131]. Energy de-
mand for cooling is a topic that is gaining more and
more attention due to the expected climate
change-related temperature rise [132, 133]. In the same
way that heating days and degree heating days are used
as input for physical models to estimate energy demand
for heating, cooling days and degree cooling days are ne-
cessary to estimate energy demand for cooling. Chiesa
and Grosso [134] and Petri and Caldeira [132] present
examples of calculation of these indicators for the cases
of the Mediterranean area and the USA, respectively. In
the case of the study of the Mediterranean area, punc-
tual data in specific locations of the study area are used,
while in the study of the USA, the authors utilized nu-
merical weather models to provide an estimation with
full spatial coverage. A further example is the work of
Sakaguchi and Tabata [135], who made a spatial explicit
distribution of yearly electricity demand of Awaji Island
in Japan. The authors proportionally distributed the offi-
cial values of total electric and heat energy consumption
of the island based on the participation ratios of manu-
factured shipment (to account for the manufacturing
sector), number of employees (to account for agricul-
ture, forestry, fishery, construction, mining and service
sectors) and number of households of every city (to ac-
count for the residential sector). They evaluated the pos-
sibilities of the island achieving 100% electric power
provision from PV, wind power and biomass.

Regional to neighbourhood scale At regional to neigh-
bourhood scale, the use of a typology approach for dis-
tributing energy demand in space is the predominant
trend. In this approach, the building stock is divided into
typologies and a typical energy demand per unit area is
attributed to every building depending on the typology
this building belongs to. The differences in studies are
mainly related to the source of the typical energy de-
mand values of the typologies. There are studies relying
on survey or in situ-measured data and energy demand
values reported in the literature [136–140] or on phys-
ical building models [141–146].
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As example of the first group, Dall’O’ et al. [136] stud-
ied a medium-size town in the Italian region of Lom-
bardy, where the typical energy demand values were
based on energy audits of a sample of buildings. Simi-
larly, Delmastro et al. [137] relied on measured demand
data of 288 buildings in Turin to calibrate a linear re-
gression model for different construction periods of the
buildings. These models predicted primary energy need
for space heating as a function of the surface to volume
ratio and were used to estimate the energy demand of
21 buildings corresponding to different construction pe-
riods, this with the aim of planning an optimal district
heating network. Following the same principle, Baker
and Rylatt [138] combined energy demand data obtained
from an extensive survey and GIS analysis, to estimate
heating areas of buildings. These heating areas were
employed to generate clusters of consumer types for
parts of the city of Leicester and Sheffield in the UK.
In the particular case of Bavaria (Germany), it is

already possible to find an extensive list of case studies
of heat demand cadasters produced with energy demand
values reported in the literature. This German state
launched a manual for the realization of energy use
plans for municipalities in 2011 [139]. To estimate yearly
energy demand for heating and warm water, the manual
proposes two different methodologies based on typical
energy demand values published by the German Insti-
tute for Housing and Environment (Institut für Wohnen
und Umwelt-IWU) [147]. In the simplest methodology,
municipalities are separated into settlements that are
characterized by the most common building. The energy
demand for heating and warm water for every area unit
of the settlement is the same of the most common build-
ing, which is defined in one of fifty possible building typ-
ologies (40 residential and 10 non-residential). In the
most detailed procedure, every building is classified into
one of the typologies and the energy demand values of
the typology are assigned to the building. The classifica-
tion into typologies is based on construction year, num-
ber of storeys and number of households for the
residential case. For non-residential buildings, the classi-
fication is based on the use of the building, the number
of employees, number of beds (for hospitals), number of
pupils (for schools and kindergartens) or the area of
heated pools (for swimming pools). Fixed rates are dis-
counted to the energy demand indicators of a building if
there is information available about retrofitting measure-
ments. The resulting maps are used to recognize yearly
energy demand hot spots and evaluate the potential of
retrofitting measures in the buildings stock or for the es-
timation of the suitability of district heating networks.
Stoeglehner et al. [140] adopted an approach where

measured energy demand data are combined with en-
ergy demand values reported in the literature. These

authors relied on energy demand data obtained from an
extensive survey for commercial, industrial buildings
and a part of the residential users. Additionally, they uti-
lized information of the national building dwellings and
buildings registry of Freistadt in Austria to classify resi-
dential buildings, without information from the survey,
into typologies defined by Mitter [148]. The energy con-
sumption values for heating and hot water and the esti-
mated heated area of the buildings were used to
estimate total energy demand for each building in the
municipality. Moreover, two retrofitting scenarios were
proposed, one where energy demand reductions of 20%
are achieved and other where these reductions reach
50%. Based on these data, these authors developed an
ArcGIS-based tool called “Energiezonenplanung” (en-
ergy zones planning - EZP) that cumulated the energy
demand of buildings per street in order to build energy
zones, which could be linked with a district heating net-
work. The tool calculated the heat demand density per
metre of district heating network for different possible
network shapes and under the different building retrofit-
ting scenarios. This indicator served to determine the
economic viability of such infrastructure in every case.
In the second group, the studies rely directly on a

physically based model of the energy use of buildings.
Gadsden et al. [141] proposed a methodology called
“solar energy planning” (SEP) for the residential building
stock of the UK. The core of the methodology is the
monthly version of the Building Research Establishment
Domestic Energy Model (BREDEM-8[149]). This two
zones model is able to estimate energy consumption in
dwellings in terms of space heating, water heating, light-
ing, electrical appliances and cooking. Basic input data
can be estimated from the shape and age of the dwelling.
The building stock is divided in six main classes (de-
tached, semi-detached, end terrace, mid-terrace,
mid-terrace with unheated connecting passageway and
flat). GIS is used to obtain basic geometric information
of the buildings and to display the results. The method-
ology is theoretically usable for entire cities, but only
one application example for a small part of Leicester was
found in [142]. Yu et al. [143] forecast energy demand at
tax lot scale for a new planned district in the Yongding
county in China. Buildings were classified into typolo-
gies, and energy demand for heating and cooling per
room conditioned area were calculated using the engin-
eering simulation software from the US Department of
Energy, eQuest. The authors used a Bayesian model to
calculate the energy demand per tax plot with the aim of
determining the potential of water source heat pumps
and CHPs at this scale. Vettorato et al. [144] conducted
a case study with data of an alpine municipality (2700
inhabitants and 1400 buildings) located in Trentino,
Northern Italy. Energy demand for heating was
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computed based on energy losses through transmission
and ventilation. The energy losses due to transmission
were approximated using the differences between exter-
nal and internal temperatures and building insulation
parameters while the energy loss due to ventilation cor-
responded to standard values. The authors summarized
the building-specific energy demand data into three
qualitative levels. These levels were presented in a raster
map that was employed to estimate the potential exploit-
ation of RES such as solar irradiation, ground source
geothermal heat pumps, wood biomass and hydropower
from drinking water systems. Ascione et al. [145] calcu-
lated yearly energy demand for heating and cooling for
the historical Centre of Benneto in Italy. They simplified
and adapted the seasonal calculation procedure of the
European Standard EN ISO 13790. The calculation was
performed for more than 500 buildings, and the results
were summarized by assigning the demand of a building
to a certain energy performance class. The resulting en-
ergy demand maps served to evaluate the potential of
poly-generation equipment (Combine Cooling, Heat and
Power-CCHP) to cover the energy demand. Similarly,
Fichera et al. [146] mapped yearly energy demand of
buildings, transport and outdoor lighting. They relied on
the Italian version of the EN ISO 13790 to compute en-
ergy demand for heating and the energy performance
index (yearly energy demand per unit of heated area) for
typical buildings in different construction periods (with
the same assumptions used by Ascione et al. [145]).
They employed the model results from typical buildings
to construct regression curves that correlated the energy
performance index with the surface to volume factor.
These curves were the input to estimate the energy per-
formance index of every building in a neighbourhood
(with a total area of 0.67 km2) of the urban area of Cat-
ania in Italy. Electricity demand per unit of build area
was calculated by dividing the total electricity demand of
the regional area in the census tract area. For the out-
door lighting, the number of lamps was multiplied by
the power rating of each lamp and by the operation time
per year. This value was divided by the area of streets
and public spaces in order to obtain the yearly energy
consumption per unit area.

Spatiotemporal modelling for renewable energy planning
One necessary development for GIS-based studies of
RES was and still is the full integration of time in the
analysis. This was already stated by Angelis-Dimakis et
al. [12] and was reaffirmed by Resch et al. [19].
RES-related studies with a spatiotemporal approach
were not absent until this moment but is only with re-
cent developments in hardware and software that such
studies started to grow in number. The necessity of inte-
grating time analysis in GIS, the idea of managing

spatiotemporal data sets and the description of the cor-
responding challenges can be traced back to the 1990s
[150–155]. Spatiotemporal modelling was seen as the
step forward in GIS, which would contribute to study a
multiplicity of environmental, social and economic is-
sues in a whole new way. However, there were limita-
tions in terms of data types, software and hardware able
to manage the necessary data sets and analysis. With the
increments in CPU speed and storage capacities as well
as with gains in popularity of parallel CPU computing,
GPGPU, cloud computing and Big Data analysis tools,
these limitations started to disappear in the last years.
Additionally, developments in software such as space-
time [156], a package for spatiotemporal data sets for
the R software platform, or TGRASS [157], a spatiotem-
poral database and analysis framework for the GRASS
GIS software, have brought the potential of spatiotempo-
ral modelling and analysis to a wider public. In fact,
some of these developments have already found their
way to studies related to RES.
Spatiotemporal modelling and analysis of RES is an

emerging research field. As presented in Fig. 3, the num-
ber of publications indexed in Scopus with the words
“spatiotemporal” and “renewable energy” in the title, ab-
stract or keywords grew from a total of two publications
cumulated until 2007 to a total of 262 in 2017. This de-
velopment includes a significant growth trend between
2011 and 2017. Comparable trends are observable for
the combinations of “spatiotemporal” and “wind energy”
and “spatiotemporal” with “solar energy”. The number of
documents in these two cases reaches 59 and 45 publi-
cations, respectively, for the peak year 2017. Analogously
to the case of GIS and “solar energy” in the previous sec-
tion, documents related to “solar energy” have the lon-
gest trajectory when compared to publications related to
“wind energy” or “biomass energy”. As expected, in the
light of the previous section, the number of publications
related to “spatiotemporal” and “biomass energy” is the
lowest, due to the storability properties of biomass.
Differently to the case of only spatial GIS-based stud-

ies of RES, spatiotemporal approaches tend to consider
multiple technologies and energy demand at once. One
of the pioneers, Biberacher [158], proposed a spatiotem-
poral modelling approach implemented in the software
tool TASES (Time and Space resolved Energy Simula-
tion) in 2004. This served to perform studies at the con-
tinental and global scales. TASES was utilized to
investigate the requirements for complementary trans-
mission and storage requirements in the EU in a sce-
nario of high penetration of RES, to quantify the
competition of PV systems based on geographical de-
pendency and to evaluate the idea of a global electricity
grid. The temporal resolution of such studies was 1 h
covering a period of 1 year and the resolution of the
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input data exceeded several kilometres. The author also
proposed several optimization alternatives for finding so-
lutions for the multiple case studies. These included lin-
ear optimization and an evolutionary algorithm. Also in
the proposal of a large-scale energy system but in a
much newer study, Schmidt et al. [159] used time series
of 34 years of reanalysis data and hydrological inflow
measurements for proposing an optimal mix of solar PV,
wind and hydropower for providing low-carbon electri-
city supply in Brazil. The reanalysis data sets had resolu-
tions of several kilometres and a temporal resolution
either of 1 or 3 h, while the hydrological inflow data was
punctual (data for every hydroelectric power plant) and
had a daily temporal resolution. These authors used an
optimization and a simulation model to propose possible
solutions that allow high integration of RES in the Bra-
zilian energy matrix, which at the same time improve
the reliability of the energy system.
Examples at the country level for particular technolo-

gies can be found in [160], [161] and [162]. The first
publication deals with the economic potential of wind
power and the second and third ones with optimal de-
ployment of photovoltaics for different types of users. In
[160], potential areas for the installation of wind turbines
are identified by discarding areas with spatial constraints
related to the natural environment, infrastructure and
regulations. The average wind speed per hour at 100 m
height for every 100 m × 100 m area is calculated for
13 years using Weibull parameters and Monte-Carlo
simulation. The energy output of potential turbines is
estimated with technical parameters of two different tur-
bine types. In the case of [161], the study country,
Austria, is divided into a raster grid of 1 km × 1 km and
PV potential as well as electricity demand is estimated

for every pixel in the grid in hourly temporal resolution
for an entire year. The potential PV energy yield was de-
termined with solar irradiance data from the Climate
Monitoring Satellite Application Facility and
temperature data from the reanalysis of the ECMWF. In
terms of technology, crystalline silicon cells mounted on
free-standing racks in the angle that provides the highest
output per year were assumed. Electricity demand pro-
files were spatially distributed using population, build-
ings and dwellings data in 1 km × 1 km resolution. The
time series were based on measured data of 800 house-
holds for residential users and on simulated stochastic
load profiles for commercial users. The analysis served
to identify the maximum possible PV penetration in the
national energy matrix without any investments into grid
enforcements. In [162], the users are self-sufficient
single-family houses and an assessment of the required
installed capacities of PV and Battery systems to supply
such users is performed. The authors use a
mixed-integer linear program (MILP) and 20 years of ra-
diation and temperature data from the COSMO-REA6
regional reanalysis [163] to deliver maps of punctual
minimum and optimal required system sizes to supply
this type of users in all rural areas in Germany and the
Czech Republic.
The representation of a study area in form of a raster

grid (common denominator in studies from the global to
the country scale) can be found also in studies at the
municipal and city scale. In [164], [165] and [166], the
authors proposed a top-down model to generate
micro-level spatiotemporal urban energy demand pro-
files from macro-level input data, which is used to evalu-
ate high penetration of RES such as wind power and PV
in several city-wide case studies. They utilized a

Fig. 3 Spatiotemporal modelling and renewable energies: search results in Scopus for articles including the word spatiotemporal in combination
with either renewable energy, biomass energy, wind energy or solar energy in the title, abstract or keywords
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statistical approach to distribute energy demand for elec-
tricity, heating and cooling in a raster grid that repre-
sents the study area. Using the demand data as input,
the authors evaluated the potential of deploying
multi-carrier energy networks and enabling technologies
such as heat-pumps, heat and electric storage systems as
well as electric cars (for storage) for integrating central-
ized wind production and distributed PV energy gener-
ation. The proposed models had temporal resolution of
1 h and spatial resolutions that range between 100 and
5000 m (depending on the homogeneity of the city) and
were used for Delhi, Shangai and Helsinki [164–167].
These case studies showed that RES penetration can
only achieve 20%, if no reverse flow is allowed. However,
this can be increased up to 70% if short-term storage is
available or interconnection between the different energy
carrier grids is possible.
The change from the raster grid approach to an

object-based approach (e.g. buildings) increases not only
the possibilities of the analysis (e.g. individual installa-
tions can be planned) but also the amount and quality of
the input data, and the required computational capaci-
ties increase considerably. These factors make the repro-
ducibility of the analysis difficult and have limited the
use of very detailed spatiotemporal models to only small
groups of buildings [168], such as neighbourhoods [169]
and university campuses [170, 171]. One example of a
high level of detail is the work of Robinson et al. [168].
These authors proposed a comprehensive simulation of
resource flows in the urban environment implemented
in the software CitySim. The core of the approach is a
physical thermal model to estimate energy need of
buildings for heating, cooling and hot water preparation
and to describe the thermal interactions between build-
ings. This model is complemented with radiation, behav-
ioural, plant and equipment models. The objective was
to develop a software that serves to plan a sustainable
energy supply for a certain study area. Energy conversion
systems included heat pumps, cogeneration systems, PV,
solar thermal collectors, wind turbines, boilers and ther-
mal storage tanks. These authors presented a case study
of a group of buildings in the district of Matthäus in Ba-
sel, Switzerland. A related approach implemented in the
proprietary GIS software ArcGIS is the City Energy Ana-
lyst (CEA). This was tested with data of a neighbour-
hood of the city of Zug in Switzerland [169]. CEA
includes a physical thermal model to estimate energy
need of buildings and models for rooftop solar potential
(PV, solar thermal and combined systems), ambient heat
(geothermal and water bodies), waste heat (servers, in-
dustrial processes, sewage), heat pumps, CHP, fuel cells
and combined gas cycle turbines. Moreover, CEA incor-
porates optimization modules for the thermal networks
and the sizing of the individual installations as well as

modules to support decision making (e.g. reliability as-
sessment and life cycle analysis) and to improve the par-
ticipation processes (graphic user interface in the
ArcGIS environment). The level of detail of CEA is very
high and the results are manifold, but this also means a
high level of detail of the input data and the necessity of
high computational capacities to perform the analysis.
Another detailed approach only for PV is adopted by

Kucuksari et al. [170]. They coupled GIS, CAD, math-
ematical optimization and detailed simulation of the grid
to define optimal size and locations of PV in campus
area environments. A case study of the campus of a
major university in Arizona, USA, was conducted. The
necessity of human intervention for checking every po-
tential area for PV, the use of a detailed CAD model of
the grid and the employment of PowerWorld simulator®
for simulation in a high temporal resolution make the
approach very accurate but hard to extend to larger
areas. Similarly, Choi et al. [171] developed the “PV Ana-
lyst”, a tool for the GIS software ArcGIS, which inte-
grates the Transient System Simulation Tool (TRNSYS)
to estimate PV energy yield in a high spatial and tem-
poral resolution. They presented a case study with a
DEM of 0.31 m × 0.31 m spatial resolution for 12 build-
ings in Pollock-Commons area at the Pennsylvania State
University. They used solar analyst in ArcGIS to pre-
select areas where PV would receive the maximum sun
hours either during the winter or summer solstice. After
that, they generated PV energy yield profiles in 1-h tem-
poral resolution for every selected section of the roofs of
the 12 buildings using TRNSYS.
Also in the case of PV, the work of Lukač et al. [107]

in 2014 and Jakubiec and Reinhardt [111] in 2013 (pre-
sented in the section of only GIS-based estimations of
PV potential) described methodologies which were
already able to generate PV potential data in high spatio-
temporal resolution for entire cities, but they did not
make further use of the data. It was only in 2016 that
Srećković et al. [172] extended the methodology of
Lukač et al. [107] to improve the evaluation of suitability
of surfaces for PV. These authors included the high tem-
poral resolution energy output of every potential surface
and the electricity demand profiles of buildings in a dis-
tribution network model to assess which of the installa-
tions would lead to the highest reduction of network
losses per year. Mavromatidis et al [173] employed the
solar analyst of ArcGIS (with atmospheric parameters
calibrated using Meteonorm data) to generate hourly ra-
diation time series for every building roof in the Swiss
village of Zernez (1,150 inhabitants and 300 buildings).
These time series together with hourly demand data
(constructed with modified daily electricity demand pro-
files of the Swiss norm SIA 2004) were the input for a
mixed-integer linear program (MILP) to select optimal
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buildings’ roofs for installing photovoltaic panels and op-
timal storage sizes based either on minimum costs or
maximum integration of PV. Penetration rates of PV
ranged from 25% for the minimum cost optimization to
64% for the maximum RES share case.

Spatiotemporal modelling and energy demand
The necessity of models and methodologies to estimate
energy demand in a high temporal resolution is strongly
linked to developments in the studies of high integration
of RES. Most of the examples of the previous section
already included a methodology to estimate energy de-
mand. In the case of energy demand for electricity, stud-
ies rely on data from grid operators, standard load
profiles or models for certain types of users. Top-down
and bottom-up spatiotemporal models for electricity de-
mand were used, e.g. in [161, 165, 166]. Multiple other
approaches, based either on deterministic statistical dis-
aggregation or bottom-up models, are available for the
estimation of the electricity demand for the residential
sector in high temporal resolution [174]. These, however,
do not have a spatial reference. In the case of energy de-
mand for heating, cooling and hot water preparation,
there is also the parallel development between spatio-
temporal models for demand and RES potential. This is
mainly related to the assessment and planning of district
heating or multi-carrier networks, which are supported
by technologies such as heat pumps, solar thermal sys-
tems and CHP. Examples of the use of these models in-
clude [145, 167–169, 175, 176], and there is also a
significant body of literature dedicated exclusively to
these energy demand models for the urban environment.
Spatiotemporal models for energy demand for heating,

cooling and hot water preparation are mainly a part of
what Reinhart and Cerezo Davila [124] described as
urban energy models (UBEM), Kavgic et al.[123] as “bot-
tom-up building physics” and Swan and Ugursal [122] as
“bottom-up engineering”. UBEM comprise a nascent
field that couples detailed individual building energy
models with spatially distributed building stocks (usually
divided in typologies) that range from small groups of
buildings to thousands of them [124]. Not all UBEM are
considered here as spatiotemporal models; since studies
such as [141, 145, 146] (described in the “GIS and en-
ergy demand” section ) used both, detailed individual
building energy models and spatially distributed building
stocks, but the output of the model is produced and
analysed only for yearly values. Spatiotemporal models
employ detailed building models to produce time series
(usually hourly data) of energy demand. While there are
different tools and approaches to generate these time
series, most of the published work relies on a similar
model to the “simple hourly calculation procedure” ex-
plained in the EN ISO 13790. This is a single zone

(extendable to n-zones) thermal model defined as a five
resistances one capacitance model that takes into ac-
count heat losses due to transmission and ventilation as
well as heat gains due to occupancy, solar irradiation,
appliances and lighting [177]. The model itself was vali-
dated in several occasions [177, 178] and is the core of
the GIS-based procedures such as the developed by
Ramirez Camargo [179] and posteriorly by Fonseca and
Schlueter [180]. In both works, the EN ISO 13790 was
used in combination with ArcGIS for both data manage-
ment and visualization. In [179], the calculation was sim-
plified to run with typologies data of the TABULA project
(there is data available for the residential sector of several
European countries) [181]; it did not consider the effects
of shadowing from near objects on the solar energy gains
of the buildings and was tested with thousands of residen-
tial buildings of a German municipality. Differently, in
[180], the development was customized to Swiss data-
bases, took the effect of shadows on the solar gains into
account (using data generated with a modified version of
the solar analyst of ArcGIS) and was tested with data of a
Swiss neighbourhood. The building thermal model of
Kämpf and Robinson [182], which is similar to the model
the that was used in [179, 180], is also the core of the work
of Robinson et al. [168], but these authors did not rely on
ArcGIS for data management and visualization. The major
challenges recognized in [168, 179, 180] are the quality of
the input data of the building stock (e.g. current level of
construction quality, assumption about occupational be-
haviour), which can severely impact the results and the
necessary computational capacities that limit the pos-
sible size of a study area, and the amount of build-
ings that could be studied.
The field of spatiotemporal modelling of RES poten-

tials is only in its early development stage, and the em-
phasis has been given either to models for a large spatial
coverage such as entire countries or to the study of
small areas such as neighbourhoods. These develop-
ments are still insufficient to support the planning
process of decentral energy systems for municipalities
and further research is necessary: Coarse models usually
available for large areas can only be used in a limited
manner to evaluate individual installations in urban en-
vironments. Very high resolution approaches such as the
ones used for neighbourhoods are difficult to apply to
larger areas due to the necessary input data and required
computational capacity. Thus, the following require-
ments have to be addressed: (1) the development of pro-
cedures to integrate and resample spatiotemporal data
sets and models with large coverage into models for mu-
nicipalities; (2) the definition of appropriate input data
sources and level of detail that allow the assessment of
individual RE generation installations for areas consider-
ably larger than neighbourhoods; (3) the determination
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of a balance between UBEMS for countries and UBEMS
for neighbourhoods in order to model large building
stocks in detail by taking the geographic location into
consideration; (4) finding software and data structures
suitable to handle and integrate large spatiotemporal
data sets of RES potential and energy demand; and (5)
the development of algorithms and tools to support
the planning process of distributed energy systems
that can take advantage of the high-resolution spatio-
temporal data.

Methodology
In this section, a spatiotemporal modelling approach is
presented, that integrates the models discussed and
advances them in order to promote renewable energy
generation planning at a municipal scale and fulfils the
requirements enumerated in the previous section. Models
to estimate RES potential and electricity demand and
heating in high spatiotemporal resolution for municipal-
ities as well as two alternative use paths for the generated
data, in order to support the planning and decision mak-
ing process, are proposed. The latter include a decision
tree algorithm and a GIS-based user interface. The first
serves to select electricity generation plants with the best
match to electricity demand and to dimension necessary
and optimal electricity storage systems. The second one
provides an interactive environment for planning district
heating networks, based on energy demand for heating of
individual buildings and reductions on the demand (due
to retrofitting measures), and the adoption of active solar
energy harvesting systems.
The proposed methodology is graphically summarized

in Fig. 4; it is described in the next subsections, and its
multiple components are explained in detail together
with case studies in [183–186]. The different parts of the
methodology and the planning tools were implemented
using the in-memory array processing environment of
Python [187] and Numpy [188], the packages Scipy
[189] and Pandas [190], and open source GIS tools in-
cluding gdal/ogr [191], GRASS GIS [192] and QGIS
[193]. TGRASS [157], the spatiotemporal database of
GRASS GIS, was used for data management.

Energy generation potential of fluctuating RES in high
spatiotemporal resolution
Three subsequent steps are proposed to calculate the
potential of fluctuating RES in high spatiotemporal reso-
lution. The first step is the use of a GIS-based procedure
to reduce the study area only to the locations where
RES-based energy generation plants could possibly be
placed. In the case of solar active technologies (PV and
ST), rooftops represent the best possible locations since
there is no conflict with other uses or resources. How-
ever, it is not technically possible to make use of the

whole surface of the roof for PV (at least with most
widely used PV technologies) or ST systems. Therefore,
objects such as dormers and chimneys have to be ex-
cluded from the analysis. The remaining surface areas of
a roof are classified based on the two main construction
factors that influence the output of active solar systems,
inclination (slope) and orientation (aspect) [194]. To
produce this selection and classification, high-resolution
DSM and building footprints are employed. The
accuracy of the identification of every potential surface
strongly depends on the quality and resolution of the
spatial data. An example for the rooftop parts of three
buildings classified in eight different aspects is presented
in Fig. 5. As discussed in detail in [195], a DSM reso-
lution of 25 cm (DSM0.25 in Fig. 5) is the best com-
promise between accuracy and amount of data to
identify and classify suitable surfaces for active solar sys-
tems based merely on aspect and slope.
In the case of the selection of areas for wind power de-

ployment, the procedure is not as straightforward as for
solar technologies. A GIS-based procedure that excludes
unsuitable areas due to legal and environmental factors
is utilized. Since the municipality that is used for most
of the case studies is located in Bavaria (Germany), the
implemented restrictions correspond to the design and
approval recommendations of wind turbines in Bavaria,
as it is described in [196]. These exclude:
(a) Locations in a radius of 100 m from federal motor-

ways, railways, power lines and federal, state and country
roads;
(b) Locations in a radius of 500 m from air traffic

areas, industrial buildings, national parks, landscape
conservation areas, bird protection areas, biotopes and
flora and fauna habitats;
(c) Areas in a radius of 800 m from residential

buildings and buildings on mixed residential and
commercial areas,
from wind power use. These types of restrictions can

nonetheless be adapted to the local regulation of any
particular study area globally.
The second step to calculate the potential of fluctuat-

ing RES in high spatiotemporal resolution consists of
generating the time series of solar irradiance or available
wind resources for every potential location identified in
the previous step. These time series correspond to either
a particular year or to a typical meteorological year.
Solar irradiance is calculated in hourly or intra-hourly
temporal resolution for every pixel inside of the suitable
areas using the modules r.horizon and r.sun of GRASS
GIS. r.sun is an open-source tool that has been widely
used in merely spatial studies concerning active solar
technologies, and it is a more flexible, efficient and
reliable tool to calculate solar irradiance in high spatio-
temporal resolution for entire municipalities than its
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proprietary counterpart, solar analyst of ArcGIS [197].
Shadowing on the surfaces is taken into account by cal-
culating the horizons due to near and distant objects,
which are computed separately using r.horizon. The ho-
rizons of near objects such as neighbouring buildings,
chimneys or dormers are calculated with a DSM with
the highest available resolution. Horizons due to distant
objects, such as mountains, in a radius of 230 km2 are
calculated using a DSM of coarser resolution. Further at-
mospheric parameters (e.g. Linke turbidity factor) for

the clear-sky calculation are retrieved from data sources
with global coverage such as the SODA database [198].
The required data for estimating solar irradiance under
real-sky conditions are acquired either from individual
ground measurements, test reference years, satellite
imagery-derived data or reanalysis data. Ground mea-
surements and test reference years are the most accurate
data sources, but satellite imagery-derived data and re-
analysis data have better coverage and are suitable data
sources for locations with a low density of ground

Fig. 4 Methodology overview: overall workflow of the proposed methodology
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stations [199]. Finally, the resulting real-sky irradiance
data of all pixels in a certain surface is summarized in
one single value. By doing this, time series of 1 year with
a resolution of at least 1 h of solar irradiance for every
suitable surface are generated.
For the case of wind resources, wind speed time series

for every suitable area for wind turbines are calculated
using the power law of logarithmic profiles for estimat-
ing wind speed at hub height. This requires certain wind
speed reference data (ground measurements or reanaly-
sis data) and information about the surface roughness
length that can be estimated from land use data. The re-
sults are hourly or intra-hourly wind speed time series at
hub height for every suitable area for wind turbines.
The third step is the calculation of the energy yield of

every possible RE installation. The PV output is calculated
based on the irradiance time series computed in the previ-
ous step, photovoltaic panel efficiency, a temperature cor-
rection factor, ambient air temperature, a reduction factor
due to installation type, nominal operating temperature and
the available surface area. In the case of ST systems, the
relevant parameters are also the irradiance time series, am-
bient air temperature, the operational temperature of the
system, the efficiency and the available surface area. Ambi-
ent temperature can be retrieved from test reference years
or reanalysis data. For wind turbines, the power output is
estimated using a turbine performance curve that depends

on the capacity factor, cut-in wind speed, rated wind speed,
cut-out wind speed, diameter of the rotor, rated power out-
put and air mass density. The instantaneous output of the
systems is assumed to remain constant during every time
step (this implies that irradiance, temperature and wind
speed remain unchanged during the considered time step
length), and the final output are the energy generation time
series of the respective installations.

Energy demand for electricity, heating and water heating
in high spatiotemporal resolution
A widely used approach, identified in the literature re-
view, is adopted to generate electricity demand time
series: Yearly totals of electricity demand of the munici-
pality from local grid operators are transformed to time
series using the standardized load profiles provided by
the German Federal Association of Energy and Water
Management (BDEW- Bundesverband der Energie- und
Wasserwirtschaft). These load profiles consider both
daily and seasonal variations and are available in 15-min
time steps for 11 different types of users. The underlying
assumptions are that the actual demands tend to be
similar to the standardized load profiles with an in-
creased number of users (deviations around ± 10%) [200]
and that all users are part of the same grid. In the case
where only residential users are studied, population data
can also be used to calculate yearly electricity

Fig. 5 DSM resolutions for rooftop surface identification: results of rooftop surface identification and classification for DSMs with resolutions
ranging from 1 cm × cm (DSM0.01) to 1 m × 1 m (DSM1). The LiDAR data to generate the DSM1 was provided by the Bavarian Surveying Agency
(2014), http://geodaten.bayern.de. The data and methodology for generating the rest of the DSM corresponds to the one presented in [195]
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consumption, which can be transformed into time series
using the standardized load profiles.
An UBEM approach is used to estimate the energy de-

mand for heating and water heating. The methodology pro-
posed in [179] is extended to consider location-dependent
solar energy gains, which are calculated with the solar irradi-
ance time series computed with the procedure described in
the previous section. The core of this UBEM approach is a
customized version of the simple hourly calculation proced-
ure of the EN ISO 13790. The customization includes the
consideration of only one building zone and the reduction
of the input data to information about building quality pro-
vided by the database of the TABULA project. This thermal
model is employed for each main building in a study area
(secondary buildings such as stables, garages or tool deposits
are omitted under the assumption that these are unheated
buildings). Buildings are classified using georeferenced vec-
tor data of the buildings (LOD1) that include type of use,
year of construction, number of storeys and the reference
area (calculated from the building footprint and the number
of storeys). Residential buildings are classified into the typ-
ologies of the TABULA project while non-residential build-
ings are arranged merely by the construction year class.
Next, the customized version of the simple hourly calcula-
tion procedure of the EN ISO 13790 is employed for every
building. The building construction quality data (e.g.
u-values of walls and windows) are retrieved either from the
particular building typology or from an average building
representing a certain year class. The solar radiation gains
are estimated with the same irradiance data used for the PV
and ST systems. Since the underlying DSM has 2.5D and
not 3D resolution and the r.sun tool also works only in
2.5D, assumptions are necessary for the calculation of irradi-
ance on vertical surfaces. The georeferenced data is used to
omit walls that are covered by other buildings or objects
from the calculation and to construct a buffer of 1 m outside
of the walls that are actually hit by solar radiation. The aver-
age irradiance on these surfaces is adopted as input for the
calculation of solar energy gains coming through each wall.
Energy need for hot water preparation is calculated depend-
ing on the amount of hot water consumed in a certain time
step (depending on the number of active occupants in a
building and their total standard daily need of hot water)
and a simple thermodynamic equation for determining the
amount of energy necessary to heat the amount of water to
the desired temperature in a certain time step. Additionally,
compared to [179], the occupation model is not based on a
stochastic model that relies on time of use surveys such as
the one described in [201] but on a deterministic distribu-
tion of the number of occupants per dwelling, which de-
pends on the electricity demand profile. This implies that
heat gains due to occupation, appliances and lighting are
correlated to the predicted electricity demand. The output
of the UBEM is the time series of energy need for heating

and hot water preparation for every building in a temporal
resolution of 1 h.

Distributed renewable energy systems planning
The challenge after producing the massive amount of
high-resolution spatiotemporal RE potential and energy
demand data is to make it usable for the planning and
decision making processes. In order to accomplish this,
two analysis alternatives are proposed. These are briefly
described in the next sub-sections and explained in de-
tail in [183] and [184].

Sizing distributed renewable energy systems
A decision tree to find the best match between the elec-
tricity generation profiles of multiple RES installations
and the electricity demand of a municipality (or a part of
it) is proposed. The core of the decision tree is a criter-
ion called ProperF (Eq. 1) that rates the power output of
every plant based on the amount of properly supplied
energy (Eq. 2) and the amount of excess energy (Eq. 3.).

ProperF ¼

XT

t¼1

PrSut

XT

t¼1

Exct

if Exct > 0ð Þ

XT

t¼1

PrSut if Exct ¼ 0ð Þ

8
>>>>>>>>><

>>>>>>>>>:

ðEq:1Þ

PrSut ¼ Dt if Et ≥Dtð Þ
Et if Et < Dtð Þ

�
ðEq:2Þ

Exct ¼ Et−Dt if Et > Dtð Þ
0 if Et ≤Dtð Þ

�
ðEq:3Þ

where Exct = amount of excess energy in the time step t
Dt = local electricity demand at the time step t
Et = energy output of the power plant (wind or PV) in

the time step t
PrSut = amount of proper supplied demand in the

time step t
The decision tree starts by rating each potential RE in-

stallation against the local demand using ProperF. The RE
power plant with the highest ProperF is selected, and its
time series of electricity output is subtracted from the
local demand load. Subsequently, the remaining RE power
plants are rated again using the residual demand. A sec-
ond RE power installation is selected based on ProperF.
This selection process continues until the sum of the en-
ergy output of the RE energy generation plants equals a
desired RES penetration rate. The final yield of the set of
selected plants serves to dimension and calculate the state
of charge of storage systems with sizes that are defined a
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priori, optimized to be used as much as possible or to
store all produced electricity generated by the set of se-
lected plants. By setting the storage capacity to a certain
predefined value, the impact of the adoption of storage
systems on the local energy matrix can be examined.
The contribution of the virtual power plant (constituted

by the set of RE generation plants) to the local energy bal-
ance is assessed with a set of indicators. These include the
total installed capacity (in kW), variability of the output (in
kW), total unfulfilled demand (in MWh), total excess energy
(in MWh), total properly supplied energy (in MWh), loss of
power supply probability (LPSP), hours of supply higher
than the highest demand, hours of supply higher than 1.5
times the highest demand, required storage energy capacity
(in MWh) and required dispatch power of the storage sys-
tem (in kW). A detailed mathematical description of these
indicators is presented in [183]. The results of the indicators
serve to evaluate the suitability of a certain RES target and
the relevance of specific technologies for the local energy
matrix and to define a road map of which installations
should be actually build to achieve the desired objectives.

A GIS-based user interface for planning district heating
networks
The evaluation of the viability of district heating systems
is one of the topics that traditionally have been
approached using GIS tools. These tools serve to evalu-
ate, e.g. the energy demand density per meter of
installed heating network, which is a decisive parameter
for the construction or extension of the heating net-
works [140]. Usually, scenarios are constructed assuming
certain level of refurbishment for the existent building
stock. These are useful to predict to what extent district
heating is viable if buildings are refurbished. However,
using the time series of potential active solar energy
installations and the energy demand data, it is possible
to improve the analysis. A plug-in for the open-source
QGIS software is implemented to extend the functional-
ity of EZP, a tool for planning district heating networks
that originally operated with data in yearly resolution
[140]. With the new tool, it becomes possible to study
the impact of the adoption of ST systems in the viability
of a district heating network, to calculate a detailed
dispatch profile for the heat generation plant and to cal-
culate the exploitation potential of the remaining roof
areas for PV as well as their contribution to cover the
local electricity demand [180].
The plug-in, called EZP+, requires the spatiotemporal

solar irradiance, the heat energy demand data, the po-
tential roof areas suitable for PV and ST deployment in
every building and the spatial data that was necessary to
run the original EZP as input. The latter include geore-
ferenced vector data with parcels and building footprints
as well as the shape of the potential district heating

network divided into a main network (constructed from
sections that correspond to street names), and the net-
work links to the buildings. Furthermore, the possible
energy losses of the network and the PV/ST energy
yields are not pre-calculated allowing the user to set sev-
eral parameters to the particular conditions of the study
area. If it is available, the user can provide specific data
about the average yearly electricity demand of house-
holds, energy demand profiles of non-residential build-
ings, energy losses of the district heating network and
the PV/ST technical parameters as well as the maximum
desired PV/ST installation size per household. The last
parameter serves to consider, e.g. local economic promo-
tion mechanisms for certain PV/ST system sizes.
After providing the input data and parameters, the

user selects the buildings that should be equipped with
PV and ST systems. The yield calculations of the respect-
ive systems are performed on the fly for every selected
building. To determine the PV potential of every build-
ing, the part of the roof with the highest solar radiation
per year is selected. If the area of this roof part is not
enough to accommodate a PV of the size defined by the
plug-in user, further roof parts with the next highest
solar radiation per year are also selected until the PV in-
stallation can be accommodated. The PV and ST instal-
lation size limit is the sum of the areas of all suitable
roof parts. The area required by a PV installation is
calculated based on the installed capacity and effi-
ciency rate entered by the user. If there is more than
one household in the building, the size of the PV in-
stallation for a certain building is multiplied by the
number of households.
The ST potential of every building is calculated and

presented analogically to the PV potential. ST plants are
initially installed in the part of the roof that yields the
highest solar irradiation. If a PV plant has been previ-
ously selected for the building, the available area of the
roof is reduced. Similarly to the PV potential case, the
energy output of the plants is compared in an hourly
basis to the energy need for heating and/or warm water
of the selected buildings (this is presented in the window
“Solar Thermal” prompted by the plug-in. An example
of it is presented in the window on the right side of
Fig. 6). The comparison can be performed for one of
three possible scenarios: current state of the building,
building with basic refurbishment or building with ad-
vanced refurbishment. These different energy demand
scenarios are pre-calculated in the energy need model
for heating and hot water preparation with assumptions
according to the data provided by the building typologies
of the TABULA project [181]. Furthermore, the hourly
energy need of the building is reduced by the output of
the ST plant. The remaining energy need is the basis to
calculate hourly load, total energy need and heat
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demand density (factor between energy requirements
and length of the network) for every building.
After all buildings, in which ST systems should be in-

stalled, have been selected, the feasibility of a district
heating system is evaluated following the concept of
EZP proposed in [140]. In the EZP, the municipality is
pre-divided into sub-zones defined by street names, then
a potential district heating network is drawn by follow-
ing the course of the streets and connecting the centroid
of every building to the main network. The sub-zones
that are to be considered are selected interactively in a
vector map as presented on the left side of Fig. 6. The
EZP+ plug-in calculates the length of the selected net-
work and its corresponding links to the buildings. The
remaining energy need profile (energy need of every
building minus the output of the ST systems) of all
buildings connected to the theoretical network is
summed up on an hourly basis. This serves to calculate
the amount of operation hours and the necessary energy
output to cover the demand of the district heating net-
work (in the EZP, the operational hours of the district
heating network were provided a priori and the energy
demand was distributed equally in every operation
hour). Moreover, total yearly energy demand per build-
ing and the heat demand density are calculated. Heat
losses are computed for the network segments and the
network links to the buildings and for the system as a
whole. All these results are summarized and presented
on a window called “district heating assessment results”,
as can be seen in the centre of Fig. 6. Furthermore, the
load profile of all selected sub-zones for the selected
refurbishment scenario is stored as a csv file. The heat

demand density is stored in the attribute table of a vec-
tor map for every group of buildings corresponding to a
sub-zone. If the selection process of potential district
heating networks is repeated for different parts of the
municipality, it is possible to compare the heat demand
density of alternative district heating networks. Planners
can use the resulting map and the calculated indicators
to evaluate the economic feasibility of potential district
heating networks. In addition, the remaining electricity
demand time series and the energy generation time
series of the unused rooftop surfaces are also stored as a
csv file. These data are a suitable input for the VPP con-
figuration algorithm. A study of the electricity supply
system that considers the decisions that have been made
about the heat supply system can also be conducted.

Results and discussion
Case study results
The components of the proposed methodology were
applied in multiple case studies. The VPP configuration
algorithm and the EZP+ were used with data from
Waldthurn, a municipality in Germany, and Eggenburg,
a municipality in Austria, respectively.
The data of Waldthurn, a rural municipality with 2019

inhabitants, 2,518 buildings and located in northeast
Bavaria (Germany), were used to conduct multiple tests
of the spatiotemporal models and the VPP configuration
algorithm. In a first case study presented in detail in
[183], the PV model is applied to the most populated
area of the municipality (4 km2) and the electricity
demand is estimated for the residential 438 buildings lo-
cated there. The yearly energy generation potential is

Fig. 6 EZP+ : Screenshot of the EZP+ QGIS plug-in: district heating assessment results in a demo location. The buildings with ST installations and
the potential district heating network are highlighted in yellow [184]
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contrasted with the potential estimation in high tem-
poral resolution, and different PV penetration rates are
evaluated in detail. Main results include, e.g. that the
best relations between all examined indicators are given
for PV penetration levels below 40%, and that a PV
penetration around 20% does not have major impacts on
the local energy system. This analysis is extended in
[185] to all types of users in the entire municipality
(30.1 km2) and considers also the wind energy potential.
The results of this case study showed that VPPs consti-
tuted by PV and wind power installations have better in-
dicators than VPPs of PVs only. These results provide
further evidence that there is a strong complementarity
between solar and wind power, even in relatively small
areas. The findings presented in [202, 203] about the ad-
vantages of combining wind and solar power to smooth
the energy generation profiles were confirmed for the
municipal scale. VPPs with similar amounts of wind and
PV power installed capacity lead to better variability
indicators, less storage requirements and better coverage
of the demand. Moreover, it is shown that the method-
ology can be applied with modest computational re-
quirements and serves to develop detailed deployment
strategies of RES for municipalities.
Both case studies confirm the notable difference

between the results that are obtained with a merely
spatial analysis and the ones achieved with the spatio-
temporal modelling approach. Following a merely spatial
approach, the yearly PV energy generation potential is
several times higher than the yearly electricity demand
in both cases. In contrast, the spatiotemporal approach
shows that the adoption of PV in a configuration, which
is able to produce as much energy as the total yearly
demand, would only cover the electricity demand in
around 30% of the time steps. Such a PV-installed cap-
acity would provide less than 50% of the electricity at
the right moment and would create reverse loads with
very high peaks during most parts of the summer in the
absence of energy storage capacity. Alternatively, such a
PV penetration would require massive amounts of stor-
age capacity or curtailment. Even optimally sized storage
systems reached a relation of 2 kWh storage capacity
per kilowattpeak PV installed capacity when the PV
share increased to 60% of the yearly demand. It is only
with penetration levels around 20% of the yearly demand
that PV systems do not have major impacts on the local
energy system. These results are comparable to the 20%
PV penetration limit that can be achieved without pro-
ducing reverse loads calculated by [164, 166, 167].
Furthermore, the best relations between all examined
indicators were found for PV penetration levels below
40%. In [173], similar results were presented. In this
work, the authors developed a MILP to calculate the PV
penetration rate that would minimize the energy

provision costs and the maximum possible integration of
PV for a village. For the case study of a Swiss village,
these values were 25% and 65%, respectively. The au-
thors determined also that for the realization of the
maximum PV penetration, at least 2 kWh storage cap-
acity per kilowattpeak installed PV would be required.
A further case study was conducted with the PV

potential in high spatiotemporal resolution and the elec-
tricity demand of Waldthurn calculated in [185]. These
data are used in [186] to evaluate the impact of
small-scale storage systems on the PV penetration
potential of the municipality. The adoption of a low
share of storage systems improves indicators concerning
energy utilization, variability and reliability of the energy
supply. However, higher shares of storage systems only
marginally improve these indicators.
Moreover, the use of the high-resolution spatiotempo-

ral models illustrated that selecting PV installations
based on the maximum yearly yield is not necessarily
optimal and that traditional spatial and even state of the
art spatiotemporal procedures (concerning relatively
small geographic areas) overestimate the total PV poten-
tial in many cases. The case study presented in [183] in-
dicates that a VPP configuration that includes PV
installations with different “non-optimal” installation
conditions (aspect, slope, shadowing), as the one ob-
tained with ProperF, has a dispatch profile with less vari-
ability, requires less storage capacity, has a lower loss of
power supply probability, produces less very high energy
generation peaks and provides more energy when it is
actually required. In addition, several studies assumed
that “optimal” installation conditions are given for every
surface suitable for PV deployment (see, e.g. [204] and
[161]). However, the validity of this assumption could
not be confirmed with the high resolution spatiotempo-
ral analysis. The case study conducted to evaluate the
impact of small-scale storage systems on the PV pene-
tration potential shows that the assumption only holds
for a reduced number of the potential surfaces. Differ-
ences between the energy yields of the PV rooftop plants
with the highest energy production per year can easily
be above 10% [186].
Data from Eggenburg, a municipality in Lower Austria,

served to generate a trial data set to test all models and
the EZP+. The case study presented in detail in [184]
shows the effects of ST systems and building refurbish-
ment on the energy demand density of a part of the mu-
nicipality suitable for district heating. A relatively low
share of ST adoption and standard refurbishment of the
building stock can already transform a highly convenient
and economic district heating network in a non-viable
project. The integration of the proposed spatiotemporal
models in the EZP+ serves to numerically determine key
assumptions such as the operation hours of the district
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heating networks and the amount of energy that would
be required in every time step. Furthermore, planners
can use the tool to evaluate the impact of adopting re-
furbishment measurements and ST systems to the local
heat energy demand.

Strengths and weaknesses of the presented methodology
With the proposed methodology and the conducted case
studies, it has been shown that GIS-based procedures
for RES assessment and energy demand estimation can
incorporate the temporal component using open-source
software and modest computational capacities. High-
resolution spatiotemporal models of energy demand and
RES-based supply of municipalities can be developed,
analysed and visualized with the hardware nowadays
available in standard workstations. The core algorithms
do not provide the most detailed output possible, but in
exchange, these require relatively little input data and
computational capacities. These characteristics make the
algorithms suitable to be used to plan RES-based system
for the entire municipalities. This has been shown by
testing the proposed modelling approach with data sets
that are considerably larger than the ones used in other
state of the art studies. Instead of considering neigh-
bourhoods or villages with a handful of buildings, a mu-
nicipality with thousands of buildings has been studied
under the proposed approach. Furthermore, an inter-
active tool such as the EZP+ is more understandable for
general non-scientific users than optimization-driven
methodologies and can easily reflect real intensions of
the users for the construction of certain systems.
In terms of reproducibility, the methodology presents

strengths in the proposed energy supply models and has
an important drawback in the energy demand models.
While spatiotemporal RES potential models can be used
worldwide, energy demand models are difficult to use in
the same form even between municipalities in neigh-
bouring countries. On the one hand, developments in
spatiotemporal data sets of temperature, solar radiation
and wind speeds allow reproducing the proposed models
in locations all around the globe. The main factor that
should be considered carefully is the quality of the
underlying reanalysis or satellite imagery-derived data
sets. On the other hand, transferability and reproducibil-
ity of energy demand models are not as straightforward
due to the dependency on the quality of local databases.
For instance, if it would be of interest to apply the
UBEMs presented in [168] or in [169] (case studies in
Switzerland) for municipalities in neighbour countries
such as Germany or Austria, considerably more detailed
information of the building stock would be necessary
than widely available. Unfortunately, the strategies for
improving the underlying input data proposed in [141]
(i.e. rapid site survey of the building façades, the

compilation of already existing energy survey forms from
individual buildings and full property surveys) are time
consuming, expensive and do not necessarily solve the
problem with the lack of data for non-residential build-
ings or the issues with data availability and data protec-
tion policies that hinder the studies.
Moreover, the proposed demand models and in gen-

eral UBEMs are also strongly dependent on the behav-
iour of buildings’ users. This is difficult to predict, and
the available models rely mainly on specific local data.
With the current state of widely available input data for
energy demand models, it is difficult to expect that these
present highly accurate results (even the building energy
need estimation with high-quality input data presented
in [180] for a location in Switzerland included buildings
where errors higher than 50% were obtained) and that a
worldwide application would be feasible in the near fu-
ture. More general models such as the statistic
raster-based models in [164] could be easier to replicate
and use in other locations around the world, but these
provide little information for the planning of individual
energy generation installations. Data quality and avail-
ability are issues that should be addressed and that will
considerably improve not only the reproducibility of the
models but also the confidence on the derived results.
Finally, the information and results produced with the

models can be easily visualized with (open source) GIS
platforms. The results of the optimal sizing of a
municipality-wide VPP can be presented in digital maps in
an informative manner. The assessment and planning
process of district heating networks can be interactively
conducted using the EZP+ plug-in, in spite of the com-
plexity and large size of the underlying data sets. Add-
itionally, the implementation based on open-source GIS
platforms and software allows the use of the proposed
methodology and tools to a wider public than comparable
approaches that rely on proprietary software such as pro-
posed in [180]. This characteristic enables also other inter-
ested researchers to contribute to extend the current
planning tools with further indicators and approaches be-
yond the current focus in technical characteristics of the
systems. Future work can considerably profit from the im-
plementation of the models in platforms designed for big
data analysis such as the open-source raster array engine
rasdaman [205] instead of classical GIS tools as well as
from the migration from a workstation based to a cloud
environment implementation.

Strategic relevance of the presented methodology
EZP+ is specifically designed to unfold strategic relevance
for integrated spatial and energy planning. Yet, the case
studies demonstrate the feasibility of the methods and
show strengths and weaknesses of the proposed method,
but are no role models for learning in planning processes.
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The strategic relevance of the presented methodology can
be demonstrated on the case study Freistadt for the ori-
ginal EZP method in [206], which provided spatial model-
ling of biomass district heating supply options without
temporal modelling: the planning method was applied
during the revision of the municipal spatial development
strategy and land use plan. First, it could be revealed that
the town of Freistadt had many areas suitable for biomass
district heating. Second, these results were shared with the
house-owners of the respective areas and a question was
asked if the houses would be connected immediately when
a district heating grid would be built within 12 months.
The yes-answers provided for an economically feasible
grid, a utility provider was found and a biomass district
heating system with integrated ST use was built and
started operation about 1 ½ years after first research re-
sults were discussed with the local decision makers. Third,
the municipal council introduced new regulations in
spatial planning, zoning district heating supply areas tak-
ing potential energy savings via insulation of buildings as
well as future urban developments into account, and
introducing the regulation, that future development of
residential, retail, office and public buildings should be
built in these areas, so they can be developed as appropri-
ately dense and mixed-function urban neighbourhoods
(about the learning processes and their organisation, see
[207]). This is especially important, as pure residential
areas provide about 1.500–2.200 full load hours, whereas
4.500 up to 6.000 full load hours can be assumed in
mixed-function areas with residential, retail and office
buildings as well as public facilities like schools, hospitals
and indoor swimming pools [208].
EZP+ is far more advanced, so a much higher rele-

vance for strategic decision making can be expected.
With spatiotemporal modelling of energy demand and
renewable energy generation with different technologies,
decision makers, planners and local communities are
empowered to select networks of technological solutions
as no-regret energy strategies on the local and regional
level. The presented methodology can serve public dia-
logue in participatory planning processes in order to find
the optimal solutions under current conditions without
harming future development options. The strategic rele-
vance also lays in the potential to make complex system
interrelations visible and to provide the basis for the
assessment of perceived impacts of potential goals and
actions on the supply security and the necessary invest-
ments as well as their positive and negative environmen-
tal impacts. As EZP+ connects the spatial distribution of
energy consumers with certain temporal consumer
patterns with the spatial allocation of RES in the same
spatial context, it can support decisions about two
strategic dimensions: (1) in energy planning picking the
best technological solution as a network of different

technologies for securing energy supply at a given point
including the dimensioning of energy generation, grid
and storage, and (2) giving incentives for spatial plan-
ning to introduce and allocate land uses to places where
they contribute to a resilient energy system by securing
a favourable temporal pattern of energy demand in a
certain spatial context. Therefore, EZP+ might be a
powerful tool to provide the information base for cli-
mate change mitigation strategies. If climate change
scenarios are used to estimate potential impacts of cli-
mate change on energy demand and renewable energy
generation patterns, EZP+ might even be used for cli-
mate proofing of energy strategies.

Conclusions
Based on the results multiple conclusions can be drawn.
Firstly, there is a vast difference between the results that
are obtained from the merely spatial and the spatiotempo-
ral models and analysis of variable RES potentials. It is
likely that spatial-only analyses estimate very high RES
potentials for a certain location, but only by knowing the
distribution on time of the resource availability, it is pos-
sible to estimate which part of the potential can be actually
used. The presented case studies illustrated that while the
potential of variable RES based on yearly values was con-
siderably larger than the energy demand, only a fraction of
it can be deployed without compromising the quality and
reliability of the local energy supply system. Independently
of how many times higher the yearly generation potential
from RES is compared to the yearly demand of a munici-
pality, only RES penetration levels of around 20% of the
yearly demand can be integrated into the local energy sys-
tem without major impacts. Furthermore, RES penetration
levels beyond 40% deteriorate the proposed supply quality
and reliability indicators rapidly. Secondly, technological di-
versity is beneficial for the quality of a renewable energy
supply. A VPP configured with PV installations selected
based on the match of their energy yield to the demand
(with different aspects and slopes) achieves better
utilization, variability and reliability indicators than a VPP
constituted by PV systems that maximize the energy yield.
These indicators improve further if the VPPs include bal-
anced combinations of wind and PV power plants and not
only individual technologies. A VPP with similar installed
capacities of PV and wind can increase the amount of en-
ergy delivered at the right moment by 20% and reduce the
required energy storage to avoid curtailment by two thirds
compared to, e.g. a PV-only VPP that would deliver the
same total amount of energy per year. It is only by adopting
combinations of the available technologies that the energy
transition can be accomplished. Thirdly, spatiotemporal
analysis tools serve to evaluate the relevance of specific
technologies for the local energy matrix and to define a
road map of which installations should actually be built to
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achieve the desired objectives. The implemented EZP+
plug-in makes use of state-of-the-art spatiotemporal
models and an open-source platform to contribute to the
development of integrated plans for building refurbish-
ment, district heating networks and active solar energy
generation systems in an interactive manner. Fourthly, in-
put data quality and availability is improving, but there is
still a long way to go until the spatiotemporal models pre-
sented here can be used for larger areas and for locations
all around the world. The increasing amount and quality
of spatiotemporal data sets for relevant parameters such
as solar irradiance, temperature and wind speeds is im-
portant because it allows the reproducibility of the
high-resolution spatiotemporal models in locations where
ground measured data are scarce. However, high-quality
input data for the determination of energy demand is
limited and difficult to be accessed. It is important to
invest some effort in the improvement of the quality,
standardization and availability of the necessary databases.
Finally, it is important to note that the work presented

in this paper is a contribution to the early stages of
spatiotemporal modelling of distributed energy systems.
This field of research has just recently started to emerge,
and developments in key fields such as high-performance
computing, big data analysis and Internet of Things will
allow not only to improve the models and validate them,
but also to create models of this level of detail for entire
countries and continents. The better the models are, the
more accurate strategic decision making in integrated
spatial and energy planning can be supported by social
learning processes of decision makers, planners and the
public, so that governmental planning and bottom-up ac-
tion can determine the path for a global energy transition
to 100% renewables jointly and democratically.
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