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Abstract

Background: Biomethane, as a potential substitute for natural gas, reduces the use of fossil-based sources, promoting
bioenergy applications. Biomethane for energy use can be produced using a variety of biomass types and technologies.
Biomethane from farmland crops is currently produced by anaerobic digestion (AD) of energy crops, which is a biological
treatment of organic material resulting in biomethane and digestate. Recently, thermochemical conversion
technologies of biomass to biomethane have gained attention. Pyrolysis is a thermochemical process whereby
woody biomass is converted to fuel gas and biochar. This study assessed the land use efficiency of producing
biomethane through a maize-based AD system compared with switching to a willow-based biomethane system
using pyrolysis as an emerging technology. The energy performance and climate impact of the two pathways
were assessed from a land use perspective, using life cycle assessment methodology. The entire technical system,
from biomass production to delivery of biomethane as the end product, was included within the analysis. The
study also investigated how the climate impact was affected when biochar was applied to soil to act as a soil
amendment and carbon sequestration agent or when biochar was used as an energy source.

Results: Pyrolysis of willow had a higher external energy ratio and climate mitigation effect than maize-based AD
as a result of lower primary energy inputs and lower methane loss in the pyrolysis process and upgrading units.
Furthermore, the biochar from willow pyrolysis, when used as a soil amendment or energy source, contributed
significantly to the climate impact mitigation potential in both cases. Substituting fossil gas with biomethane gave a
considerable reduction in climate impact in all scenarios, especially in the case of willow pyrolysis. The willow pyrolysis
system acted as a carbon sink, resulting in a negative climate impact, counteracting global warming.

Conclusion: From a land use perspective, the transition from maize-based AD to a willow-based pyrolysis system for
biomethane production could be beneficial regarding the energy performance and climate impact. Application of
biochar to the soil in the willow scenario contributed significantly to counteracting emissions of greenhouse gases.
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Background

Rising global demand for energy, accompanied by decli-
ning fossil fuel reserves and increasing global warming,
has focused the attention of policymakers on a sustainable
supply of reliable and accessible energy. Two main stra-
tegic approaches for simultaneously addressing the issues
of high energy demand and climate change mitigation are
(i) use of renewable energy and (ii) improved energy
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efficiency in energy production and utilization. Biomass is
considered an important renewable energy resource, as it
is locally available, abundant, and technically flexible in
energy production.

Biogas, mainly a mix of methane (CH,) and carbon
dioxide (CO,), is a renewable energy gas sourced from
biomass and produced using either biological or thermo-
chemical processes. Biomethane, obtained after upgra-
ding biogas to >97% CH,, is an appropriate substitute
for fossil natural gas in heat and power generation and
as a vehicle fuel. A growing number of countries are
offering prospects and setting obligations to replace part
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of their fossil natural gas consumption with renewable
fuels, in order to reduce greenhouse gas (GHG) emis-
sions [1]. In Sweden, biogas can contribute to meeting
ambitious targets on decreasing GHG emissions and in-
creasing the share of renewables in different sectors,
such as industry, transport, and households, which face
major challenges in phasing out fossil fuels [2]. In 2016,
annual consumption of biogas in Sweden was 2 TWh, of
which 64% was upgraded to biomethane (97% CH,) for
the use in the transport sector. During the same year,
the total use of natural gas decreased to 10.4 TWh com-
pared with 18.7 TWh in 2015 [3].

Anaerobic digestion (AD) is the biological conversion
of biomass to biogas and is mainly associated with the
treatment of animal manure and sewage sludge. The
limited production rate and methane yield of these feed-
stocks have led to the introduction of energy-rich
co-feedstocks in order to increase biogas production.
Among high-yielding co-feedstocks, energy crops suitable
for AD are important. Maize silage provides high biomass
yield (10-30 Mg dry matter (DM)/ha), has a high methane
yield (370 Nm?/Mg organic matter (OM) according to
[4]), and has the lowest GHG emissions of all main AD
energy crops [5, 6]. Maize cultivation is expanding in
northern European countries as an adaptation to the in-
creasing temperatures, aided by the global warming effect,
creating a need to manage this crop and its residues [7-9].
The residue from AD (digestate) is used as a nutrient
source, decreasing the need for energy-intensive mineral
fertilizers and consequently reducing GHG emissions [10].
In addition, the organic fraction of the digestate can con-
tribute to soil organic matter (SOM), influencing soil
biological, chemical, and physical characteristics [11].

Lignocellulosic or woody biomass is one of the most
abundant organic materials and an attractive renewable
bioenergy source. Anaerobic digestion (AD) of woody
biomass is not considered technically feasible, due to
many factors that mainly influence the anaerobic bio-
degradability of wood such as particle size, compact
structure, proportion of structural and non-structural
carbohydrates, low moisture content, low wood-to-bark
ratio, and toxic components [12]. In order to anaerobic-
ally digest woody biomass, different pre-treatment
methods, such as biological, chemical, mechanical, and
thermal processes, are needed [12, 13]. These processes
require additional inputs and are complicated and costly
[14]. Thermochemical conversion by pyrolysis and gasifi-
cation are emerging technologies for conversion of
woody biomass to syngas, which can be further reformed
to methane [15-17]. Pyrolysis operates at moderate tem-
peratures (between 400 and 800°C) and a short hot
vapor residence time ~1s, resulting in condensable
gases (bio-oil), non-condensable gases, and biochar. Ga-
sification operates at higher temperatures (between 600
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and 1200 °C) with a long vapor residence time, generat-
ing gaseous fuels [18]. However, pyrolysis has relatively
low investment costs and high energy performance com-
pared with other processes, especially on a small scale,
and can potentially scale up to industrial level [19, 20].
The purpose of a pyrolysis plant is often to produce one
main product, either bio-oil or biochar, and thus, the
process is often optimized for one product and the
by-products are combusted to generate process heat
[21]. Both the non-condensable gas and bio-oil can po-
tentially be utilized for energy production, although in
reality their utilization can be challenging and requires
additional processing steps [22]. The biochar can be
used as a soil amendment, as it usually contains 80—90%
stable carbon that is resistant to decomposition and
mineralization, and therefore can offer a direct method
to sequester carbon for long periods [23, 24]. Further-
more, when used as a soil amendment, biochar can im-
prove soil fertility, soil structure, nutrient availability,
and soil water retention capacity [25, 26]. Moreover, bio-
char can be used for energy purposes, due to its high
energy content [27, 28].

Many studies examining the bioenergy production sys-
tems based on pyrolysis of short-rotation coppice willow
have shown good performance in energetic and eco-
nomic aspects [29-31], and short-rotation coppice wil-
low is a lignocellulose-rich energy crop considered a
renewable fuel in many countries [32—34]. It has a rela-
tively fast growth rate and low agro-chemical require-
ment [35]. In Swedish energy policy discussions, the
introduction of willow plantations for energy purposes
has been suggested as an important alternative biomass
source of woody fuel, produced on Swedish farmland
[36]. The crop is commercially grown, mainly on agri-
cultural land, and the biomass produced is used in dis-
trict heating plants for combined heat and power (CHP)
production. About 7800 ha of willow in short-rotation
coppice systems is currently grown in southern and cen-
tral Sweden [37]. Willow requires intensive site prepar-
ation and nutrient inputs. However, there are several
characteristics that make it ideal for woody crop bioe-
nergy systems, including high yields obtained in a few
years (rotation 3—10years), ease of vegetative propaga-
tion, a broad genetic base, a short breeding cycle, and
the ability to re-sprout after multiple harvests. Willow
also has a broad species diversity, which is important in
the successful development of the crop and resistance to
pests and diseases [38].

When novel conversion routes are used, it is important
to assess the energetic and environmental performance of
these from a systems perspective and compare it with that
of conventional techniques. Life cycle assessment (LCA) is
an internationally accepted methodology for calculating
the environmental performance of products or services
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[39, 40]. It provides a better understanding of how alterna-
tive systems compare to each other and also how different
sub-processes in a system affect the overall results [41].
The LCA framework has been widely applied to evaluate
the environmental impacts of products and to study the
environmental impacts of biofuels (e.g., [42]). It has also
been used to assess GHG emissions according to the
European Union (EU) sustainability criteria [43, 44].

It is well known that some biofuel production pro-
cesses require large primary energy inputs and also con-
tribute high levels of GHG emissions (e.g., during
biomass production, transport, fuel production tech-
nologies) [45, 46]. Furthermore, land use change (LUC)
can increase GHG emissions from biofuel production by
affecting the carbon balance in the soil [47]. Land ma-
nagement practices can change the characteristics and
gas exchange of an ecosystem dramatically. Additionally,
assessing the changes in soil organic carbon (SOC) sto-
rage is an important factor in accurately estimating
GHG emissions in bioenergy LCA [48]. Changes in SOC
are directly related to the level of GHG emissions in an
LCA study, while SOC itself is an important indicator of
soil quality [49].

Since biomethane can potentially be supplied through
pyrolysis of short-rotation coppice willow as an emer-
ging technology, it is of interest to study the perform-
ance and compare it with the well-established AD of
maize regarding the land use efficiency. The goal of this
study was to assess and compare the energy perform-
ance and global warming potential (GWP) of bio-
methane production in a life cycle perspective when
transitioning from a maize-based AD system producing
biomethane to a short-rotation coppice willow on the
same arable land and using a pyrolysis process to pro-
duce the biomethane. Continued production of bio-
methane using a maize-based AD system was used as
the reference.

Material and methods

Life cycle assessment methodology [39, 40] was used to
assess the energy performance and climate impact of
two different biomethane production scenarios: a refe-
rence scenario in which maize was converted to biogas
using AD and a willow scenario in which a methane-rich
gas was produced by pyrolysis of short-rotation coppice
willow. The willow scenario had two sub-scenarios,
where (a) the biochar was returned to agricultural land
and (b) the biochar was used as an energy source. In all
scenarios, the gas was assumed to be upgraded (97%
CH,) for use as a vehicle fuel or injected to the gas grid,
but the use phase of biomethane was not included in the
analysis. An attributional approach was used to model
the system and determine the inventory of physical flows
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between the environment and the technical system. Cal-
culations were performed in Excel spreadsheets, using
data on upstream emissions taken from Ecoinvent
(version 3.3) and combined literature.

System boundaries, functional units, and general
assumptions

The study period covered 44 years of maize and willow
cultivation, i.e., 44 years of annual maize cultivation and
two subsequent willow rotations spanning 22 years each.
The agricultural land dedicated to biomethane produc-
tion was assumed to be 2500 ha in southern Sweden that
had previously been cropped with maize for biomethane
production through AD. It was assumed that, in years
prior to the study period, digestate was returned to the
field as a nutrient supply for a prolonged period, bri-
nging the SOC levels to reach a steady state before the
study period.

Unit processes included within the system boundaries
of the study were agricultural operations, road transport
of biomass to the biomass conversion plant, operations
in biomass conversion plants, and handling and trans-
port of by-products (digestate/biochar) (Fig. 1). The bio-
mass conversion plants (AD and pyrolysis plants) were
assumed to be established within the local vicinity of the
agricultural land, with an average transport distance of
24 km from the field to the biomethane production plant
[50]. Based on [51], production of capital goods, such as
machinery and buildings, was not included in the calcu-
lations due to substantially higher primary energy (PE)
input and climate impact from other processes for bio-
methane production, such as agricultural operations.

The study was limited to the impact of the three major
GHGs: CO,, nitrous oxide (N,O), and CH,, originating
from biogenic sources and the technical system. All
energy inputs and GHG emissions from each production
unit in the life cycle in the two scenarios until after bio-
methane upgrading were included in the analysis. Deli-
very of the biomethane to the end users and end use
were not included. The biogenic carbon incorporated in
the final biomethane product was considered climate-
neutral, as it was intended for subsequent combustion.
However, biomethane leakage during upgrading was
accounted for.

Two different functional units (FU) were used: (1) a FU
of hectares (ha) of land per year was used to enable com-
parison of relative land use efficiency of the system
dedicated to energy crop cultivation for biomethane pro-
duction and (2) a FU of energy content of the biomethane
in the delivered product (GJ) was used in order to com-
pare the energy service delivered by each system and
enable comparison of biomethane output with its
fossil-based counterparts.
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Allocation and system expansion

Multi-functionality problems arise when one process gen-
erates more than one product, as was the case with the wil-
low scenarios in this study. International Standardization
Organization (ISO) standards recommend avoiding allo-
cation in the first instance by increasing the level of detail
in the study or by performing a system expansion. In a
system expansion, the by-products are assumed to substi-
tute existing products on the market and the environmen-
tal impacts from the substituted products are subtracted
from the total impact of the system under study. However,
multi-functionality can be handled by allocating the envir-
onmental impacts on all products, based, for example, on
their physical or economic properties [39]. In this study,
physical allocation and system expansion were both tested,
to investigate the effect of different approaches on the out-
come of the study (Fig. 2).

The allocation method was used for the default willow
scenario (i.e., willow scenario a), in which the biochar
was assumed to be returned to the soil as a soil amend-
ment. The allocation was performed based on the lower
heating value (LHV) of the biomethane and high-value
excess heat. This is a common approach in LCA of bio-
fuel systems [52, 53] and is also recommended by the
EU regulations on biofuel GHG performance [54].

In willow scenario b, climate impact mitigation pro-
spect was also quantified by considering complete sub-
stitution of fossil alternatives in a system expansion. The
system expansion was performed by assuming (i) that
the exported heat substituted heat from a natural
gas-fed, large-scale CHP plant fitted with a gas turbine

and a power-to-heat ratio of 0.45 with a total efficiency
of 90% and (ii) that 1 Mg of biochar substituted 3 Mg of
hard coal based on the LHV in industrial processes. In
the system expansion approach, the distance between
the conversion plant and end user of biochar was
assumed to be the transport distance between the farm
and plant. Data for the fossil-based products were
sourced from the Ecoinvent database version 3.3 [55].

System description
Reference scenario—maize AD

Maize agricultural operations Maize cultivation was
assumed to comprise land preparation, including deep
plowing and harrowing of soil. Seeds were assumed to
be treated with fungicide and insecticide before sowing
during late spring [56]. Harvest was assumed to be in
autumn, with an average yield of 13 Mg DM/ha and a
moisture concentration of 40% [57]. In-field transport of
2km was considered. The nutrient and chemical re-
quirements of the maize cropping system are presented
in Additional file 1: Tables S1 and S3.

Biological conversion and upgrading The biogas plant
was assumed to process 32,500 Mg DM maize silage
annually, with a total feedstock energy content of
149 GWh, based on the LHV [58]. The digester process
was assumed to be a batch digester with wet fermenta-
tion (15% TS) under mesophilic (30-37 °C) conditions.
The maize silage was assumed to be delivered to a hop-
per and mixer, where it was comminuted to a particle
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geometric length of 2 mm. In order to obtain a viscosity
suitable for the mixing equipment, a share of the liquid
digestate leaving the digester, after solid-liquid sepa-
ration, was assumed to be returned to the inlet mixing
unit [59, 60]. The feedstock then passed through a ma-
cerator before being pumped into the anaerobic digester.
The total annual biomethane production corresponded
to 102 GWh. The heat requirement of the digester was
assumed to be met by burning part of the produced bio-
gas (9.6%). The electricity used for operating the AD
plant was assumed to be taken from the grid. The raw
biogas (60% CH,) was upgraded in a water scrubber to
vehicle fuel quality (97% CHg) [58]. Outputs from the
anaerobic digestion plant were biomethane and digestate
(Fig. 3).

Digestate handling The AD plant assumed in this case
had an annual digestate output of 65,000 Mg. All nutrients
present in the feedstock of the maize AD scenario were
assumed to end up in the digestate. The mineral nitrogen
(min-N), total phosphorus (tot-P), and potassium (K) con-
tent of the digestate were assumed to have the same
fertilizer effect as mineral fertilizer. In the reference sce-
nario, 86%, 89%, and 60% of the required N, P, and K, re-
spectively, was supplied to the crop with the AD digestate,
while the remaining nutrients were supplied using mineral
NPK fertilizer [61] (Additional file 1: Table S1 and S3).

The digestate generated was assumed to be phase-sepa-
rated using a screw press, resulting in a solid and a liquid
digestate. The annual output of liquid and solid digestate
was 58,500 and 6500 Mg, respectively. The liquid was
stored in covered lagoons in order to reduce emissions of
CH, [62]. The solid fraction was assumed to be collected
in containers and transported to farms, where it was
stored in piles before being applied to soils using a broad-
caster [52].

Road transport and storage The biomass was assumed
to be transported for 24 km using a lorry with a max-
imum load of 60 Mg wet weight (ww), assuming a fill
rate of 100% on transport between the field and the bio-
methane production plant and an empty return trip.
Maize used for biogas production was assumed to be
ensiled during storage. Losses during ensiling were as-
sumed to be compensated for by changes in the com-
position of fermentation products during ensiling,
leading to unchanged methane yield from the maize
silage [63].

Willow scenario
Willow agricultural operations The study period cov-

ered two subsequent willow rotations, spanning 22 years
each, including 73-year coppicing cycles. To ensure a
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Fig. 3 Biomass conversion to biomethane in the reference maize-anaerobic digestion (AD) scenario. Different steps of biomass conversion to
biomethane in an AD plant, including inputs (biomass and electricity) and outputs (biomethane, digestate, and methane losses). Digestate (i.e,,
solid and liquid digestates) was circulated within the system to the soil as a plant fertilizer

constant supply of willow to the pyrolysis process, one
third of the total area needed was assumed to be estab-
lished each year over a period of 3 years. The biomass
yield in the first harvest of each rotation yielded 20 Mg
DM/ha, while in the second to sixth harvest yield was 30
Mg DM/ha. Mean annual growth rate over an entire rota-
tion was set at 9 Mg DM/ha/year with an average mois-
ture concentration of 48% [64]. Field operations started
with plowing before planting the seedlings. Fertilization
was assumed to be performed in the first year after estab-
lishing the willow. Weed control, both mechanical and
chemical, was assumed. Herbicides were applied prior to
plowing and during the establishment year. The nutrient
and chemical requirements of the willow cropping system
are presented in Additional file 1: Tables S2 and S3.
Harvesting was assumed to take place in winter, using a
whole stem harvester [65]. The roots and stools were as-
sumed to be removed in spring after the final harvest of
each rotation, and the soil was then prepared for a new
rotation in the following spring by repeating the field
operations of the first rotation. Establishment guidelines
for willow were based on [66].

Thermochemical conversion and upgrading The pyr-
olysis plant was assumed to process 22,500 Mg DM of
willow annually, corresponding to 113 GWh based on
the LHV of the feedstock. The energy and material flows
for the pyrolysis process were based on a process

simulation in Aspen Plus® [29], which included
pre-treatment of biomass, pyrolysis of biomass, and fuel
synthesis (i.e., pre-reforming and methanation). The final
gas was upgraded to biomethane (97% CH,). Outputs
from the pyrolysis plant were biomethane, biochar, and
exported heat (Fig. 4).

In the pre-treatment step, the biomass was assumed to
be dried to a moisture content of 7%. The feedstock was
then reduced in size (to 3 mm) using an electric grinder,
in order to ensure a high heating rate in the pyrolysis
process.

The pyrolysis of biomass was assumed to take place in
a bubbling fluidized bed reactor with external heating
and vapor recirculation. The heat of pyrolysis was sup-
plied by burning 12% of the total biomass input [29].
The pyrolysis gas was cleared of solid particles and sul-
fur by adsorption filters [67], to avoid catalyst poisoning
and deactivation. Then, part of the pyrolysis gas was
recycled, compressed, and injected into the pyrolysis re-
actor to fluidize the pyrolysis reactor bed. The recycled
pyrolysis gas was extracted after the filtering to protect
the downstream equipment. The biochar was collected
from the pyrolysis reactor and quenched.

The pyrolysis gas from the reactor was then assumed
to be converted to biomethane in a fuel synthesis step.
In the pre-reforming step, long hydrocarbon chains were
converted into mainly CO,, carbon monoxide (CO),
CH,, and hydrogen gas (H,) in the presence of a nickel
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was circulated within the system as a soil amendment. In willow scenario b, the biochar was exported from the system for use as an
energy source

catalyst (at 500 °C, atmospheric pressure) in an adiabatic
fixed bed reactor. This was assumed to be followed by a
combined water-gas shift (Eqs. 1 and 2) and a methana-
tion reaction (Eq. 3), where CO and H, were converted
to CHy in the presence of a nickel catalyst (at 300 °C and
10bars) in an isothermal reactor. Water molecules
served as a source of hydrogen in the water-gas shift re-
action and also to prevent carbon deposition on the
catalyst in the pre-reformer and methanation reactor by
lowering the partial pressure for carbon. The H,O/C ra-
tio was 1:1 on a mole basis, which is considered suffi-
cient to minimize carbon deposition [29].

CO + H,0=CO, + H, (1)
CO + 3H,—CH, + H,0 (2)

After the fuel synthesis, the gas contained mostly CH,,
CO,, H,0, and traces of CO and H,. A water scrubber
was assumed to be used to upgrade the gas to meet
vehicle fuel quality (97% CH,). Details of the heat and
energy balance of the pyrolysis process reactions and

upgrading step are given in Additional file 1: Figure S1
and Table S4.

There was a substantial production of heat in the wil-
low scenarios. The heat generated in the reformer and
methanation step was assumed to be used internally for
drying the biomass (0.62 MW) in the pre-treatment step,
with part of the heat lost through the reactor walls as
waste heat, while the exported heat (>300°C) was
assumed to be used in other industries.

Biochar handling The default case in the study comprised
willow scenario a, where the biochar was assumed to be ap-
plied to the soil of an annual crop plantation, slowly
mineralize through physical and chemical processes,
returning carbon to the atmosphere. The biochar was
assumed to be applied with manure shortly before tilling or
disking operations, requiring no extra operations for
incorporation. Emission data for the biochar handling and
soil application are presented in Additional file 1: Table S2.

Road transport and storage The stems were assumed
to be cut and then stored in bundles near the field for
natural drying. During storage, the moisture content was
assumed to be reduced to 20% WC, resulting in an
increased net calorific value. Dry matter losses were
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assumed to be 0.3 Mg/ha/year during the first 6 months
after harvest [68]. The dry stems were assumed to be
transported by a truck loaded up to 20 Mg DM to the
pyrolysis conversion plant, with the truck making an
empty return trip back to the field.

Inventory calculations and impact assessment

Primary energy input and energy ratio

The PE included in calculations was the external energy
inputs crossing the system boundary, such as energy for
raw material production, agricultural operations, trans-
portation of biomass and by-products, and conversion
of biomass to biomethane. The use of internally gene-
rated energy and energy in the biomass feedstock itself
(i.e., heat recirculation, burning part of the biomass/biogas
as process fuel in the fuel production plants) was not
included as an energy input. However, upstream PE inputs
(e.g., extraction of fossil fuels, conversion, transmission,
and distribution losses) were included [69]. Factors used
for the conversion of data on electricity and of diesel to
PE are presented in Table 1.

The external energy ratio (ER) [70] was used as an
indicator of the energy performance of the two systems.
The ER was defined as the energy content of the bio-
methane delivered relative to the total PE inputs (Eq. 4):

_ Delivered energy

ER = 4
Total PE input )

Greenhouse gas emissions and climate impact assessment
The GWP was calculated based on the net emissions of
each GHG over the entire study period, using a time
horizon of 100years (GWPyo). The characterization
factors used when calculating the GWP;o, were 28 and
30 for biogenic and fossil CH,, respectively, and 265 for
N,O [71].

Biogenic carbon fluxes In the willow scenarios, maize
cultivation was replaced by short-rotation coppice wil-
low, causing SOC stock changes over the course of the
study period. These SOC changes affected the GHG
flows in willow scenarios a and b. In willow scenario a,
the application of biochar to the soil also affected the
GHG flows. The CO, fluxes between the atmosphere
and the biosphere were modeled using the i ntroductory
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carbon balance model (ICBM) [72] and were included in
the assessment of the climate impact (Additional file 1:
Appendix S5). The biosphere was divided into three dif-
ferent pools: soil organic carbon (SOC), digestate, and
biochar (Fig. 5). In each of these, the difference in car-
bon stocks between the start and the end of the study
period was calculated using different models.

SOC modeling

The change in SOC stocks between the beginning and
the end of the study period was calculated using the
ICBM model (Additional file 1: Appendix S5) [72], a soil
carbon model for studying the soil carbon dynamics of
agricultural land. The biogenic CO, fluxes between the
atmosphere and carbon stocks in soil were modeled
based on estimations, allocation patterns, and carbon
balance models adapted from [73]. All biogenic C fluxes
to the atmosphere from the different pools were as-
sumed to be in the form of CO,. The initial SOC stock
(previous land use) was calculated by performing a
spin-up simulation of 1000 years based on the carbon
input in the reference scenario. The initial SOC level
was set at 130 Mg C/ha in both scenarios. The digestate
applied to the soil was considered an input with re-
levance for the SOC calculations. It was assumed that
26 Mg/ha/year of digestate with a total carbon content
of 15% was applied to the land in the reference scenario.
The data used in the SOC calculations are presented in
Additional file 1: Appendix S5.

Biochar stock modeling

In willow scenario a, biochar was assumed to be ap-
plied to the soil in the willow plantation. An exponential
decay model was used to model the biochar stock
change between the first and last year of the study
period, based on a model by Zimmerman [74]. It was
assumed that 1 Mg/ha/year of biochar with a total carbon
content of 76.1%, pyrolyzed at 550 °C, was applied to the
land. A description of the biochar decay model used in
this study can be found in Additional file 1: Appendix S6.

Emissions from technical systems and fertilization-
induced emissions Emissions from the technical system
related to agricultural operations were based on the life
cycle emissions of the energy carriers and chemicals used
(Additional file 1: Table S3). In the reference scenario, CH,
emissions from the AD unit of the biogas production were
set to 1% of the biomethane produced [75]. No methane

Table 1 Primary energy (PE) factor (defined as the ratio between PE and delivered useful energy) and greenhouse gas (GHG)

emissions factors for different energy carriers [55]

Energy carrier Specification

PE factor (MJ-eq./MJ) Emission (g CO,-eq./MJ)

Electricity Nordic electricity mix (NORDEL)
Hard coal NORDEL

Fuel Diesel, low-sulfur

201 20
324 292
1.35 0.01
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emissions were assumed from the pyrolysis process unit.
Methane loss during the upgrading of gases within the two
scenarios was set to 1% of the biomethane produced [76].
Methane emissions from the solid digestate storage con-
tributed 0.7% of the biomethane produced [77].

Direct emissions of N,O from both fertilizers and
digestate were included, assuming that 1% of the nitro-
gen applied was converted to N,O. Indirect emissions
were calculated assuming that 30% of the nitrogen
applied was leached and that 0.75% of this leached frac-
tion was subsequently converted to N,O [78].

Results

This section presents the energy performance and cli-
mate impact results for the different scenarios described
in Fig. 1. The “Energy analysis” and “Greenhouse gas
emissions and climate impact” sections compare willow
scenario a with the maize AD reference scenario. The
“Substitution of fossil alternatives” section presents the
results regarding system expansion in willow scenario b,
using biochar for energy purposes, compared with

willow scenario a, using biochar as a soil amendment
and the maize AD reference.

Energy analysis

Outputs and energy ratio

The energy inputs and outputs and energy ratio of the
two biomethane production scenarios are presented in
Table 2. Willow scenario a had twice as high energy ratio
as the reference scenario, due to the relatively low exter-
nal PE input, whereas the energy ratio for the reference
scenario was lower due to the higher external PE input
in relation to the biomethane output.

The output consisted of biomethane as the main pro-
duct from both scenarios and exported heat as a
by-product from willow pyrolysis. The net biomethane
output for the reference scenario and willow scenario a
was 141.0 and 111.0 GJ/ha/year, respectively. Willow
scenario a exported 10 GJ/ha/year of heat that was of
sufficient quality to be sold for use in other processes,
such as steam production or district heating (> 300 °C).
In willow scenario a, a total of 21.7 GJ/ha/year was lost

Table 2 Primary energy (PE) inputs, outputs, losses, and energy ratio for the two biomethane production scenarios

Input (PE) Output Losses Energy
ratio
(GJ/ha/year) (out/in)
Total Biomethane' Exported heat Total Methane Waste heat
Reference 26.0 1410 0.0 141.0 6.0 0 54
Willow a 125 111.0 100 121.0 20 217 89

'Biomethane lower heating value = 48 MJ/kg
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as waste heat. Methane losses from the reference sce-
nario and willow scenario a corresponded to 6.0 and
2.0 GJ/ha/year, respectively.

The reference scenario required 15 GJ/ha/year for
heating the digester, which was supplied internally by
burning part of the biogas produced. In willow scenario
a, the feedstock drying unit required 22 GJ/ha/year of
heat, which was supplied internally from the final gas
cooling stage. The pyrolysis reactor had a heat require-
ment of 21.0 GJ/ha/year, which was supplied by burning
a fraction of the biomass.

PE input

The total PE inputs to the reference scenario and willow
scenario a were 26.0 and 12.5 GJ/ha/year, respectively.
The main PE input in the reference scenario was electri-
city use for the AD plant (9.6 GJ/ha/year). Electricity use
for the upgrading of raw biogas (8.1 GJ/ha/year) was re-
lated to the high pressure used in the water scrubber,
resulting in increased solubility of CO, in water [79].
Agricultural operations in the reference scenario re-
quired a total PE input of 4.8 GJ/ha/year, mainly as
diesel in agriculture machinery (3.5 GJ/ha/year), fertilizer
(1.0 GJ/ha/year), and use of chemicals (0.3 GJ/ha/year).
Road transport of the maize feedstock to the AD plant
and of the digestate back to the field had a total PE input
of 2.5 GJ/ha/year. Digestate handling, corresponding
to 26.0 Mg ww/ha/year, required a total PE input of
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1.0 GJ/ha/year, as electricity use (0.5 GJ/ha/year) for
pumping, stirring, and screw pressing of the digestate
and as diesel use (0.5 GJ/ha/year) for field spreading
of digestate by agricultural machinery (Fig. 6).

The main PE inputs to willow scenario a were electricity
use in the biomass conversion unit of the pyrolysis plant
(5.7 GJ/ha/year) and electricity use in the upgrading unit
(1.0 GJ/ha/year). Agricultural operations in willow sce-
nario a required a total PE input of 4.6 GJ/ha/year, in-
cluding diesel consumption by agricultural machinery
(2.5 GJ/ha/year), fertilizer production (2.0 GJ/ha/year),
and use of chemicals (0.1 GJ/ha/year). Road transport
of the willow feedstock to the pyrolysis plant and of
the biochar back to the field had a total PE input of
0.7 GJ/ha/year. Biochar handling, corresponding to 1
Mg ww/ha/year, required 0.3 GJ/ha/year electricity use
in quenching equipment (Fig. 6).

Primary energy inputs per GJ biomethane output for the
different processes in the reference scenario and willow
scenario a are presented in Fig. 7. Willow scenario a gen-
erated biomethane and heat. The allocation factors were
based on the LHV of output products, which was calcu-
lated to be 92% for biomethane and 8% for heat. The total
PE input to the reference scenario and willow scenario a
was 0.18 and 0.10 GJ/GJ biomethane output, respectively.
In the reference scenario, the biomass conversion unit
made the greatest contribution (0.07 GJ/G]J), followed by
the upgrading of biogas (0.06 GJ/G]J). In willow scenario a,
the biomass conversion unit (0.05 GJ/GJ) and agricultural
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Fig. 7 Primary energy (PE) inputs per unit biomethane output in the reference scenario and in willow scenario a. Data presented in GJ/GJ
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operations (0.04 GJ/G]J) made the greatest contribution to
PE use per unit biomethane output (GJ).

Greenhouse gas emissions and climate impact

GHG emissions from technical systems and fertilization-
induced emissions

The total climate impact from the reference scenario
was 4.6 Mg CO,-eq./ha/year. Willow scenario a had a
net negative effect on the climate impact (-0.5Mg
CO,-eq./ha/year) (Fig. 8). In the reference scenario, the
largest contributor to the climate impact was AD, con-
tributing 1.5 Mg CO,-eq./ha/year, which was related to
direct methane losses (1.3 Mg CO,-eq./ha/year) and up-
stream emissions from electricity use in the AD unit
(0.2 Mg CO,-eq./ha/year). Agricultural operations and
the upgrading unit had a similar climate impact, 1.2 and
1.1 Mg CO,-eq./ha/year, respectively. The main GHG
emissions related to agricultural operations were
fertilizer use (0.9 Mg CO,-eq./ha/year) and down-
stream emissions of diesel use in agricultural machi-
nery (0.3 Mg CO,-eq./ha/year). Direct N,O emissions
from the soil due to fertilizer and digestate application
in the reference scenario were 0.08 and 0.05Mg
CO,-eq./ha/year, respectively. Methane losses in the

upgrading unit were 0.8 Mg CO,-eq./ha/year and the up-
stream emissions from electricity use in the upgrading unit
were 0.2 Mg CO,-eq./ha/year. The major GHG emis-
sions in digestate handling were related to methane
losses during open storage of solid digestate (0.5 Mg
CO,-eq./ha/year) and storage of liquid digestate in la-
goons (0.1 Mg CO,-eq./ha/year) (Fig. 8).

The main contributors to the climate impact in willow
scenario a were fertilizer use and the biomass conversion
unit, contributing 0.7 and 0.2 Mg CO,-eq./ha/year, respec-
tively. The highest impact from the fertilizer unit was
related to direct N,O emissions from the soil due to
fertilizer application (0.5 Mg CO,-eq./ha/year). Major GHG
emissions in biomass production were related to upstream
emissions of electricity use (0.11 Mg CO,-eq./ha/year).
Direct methane emissions from the upgrading unit contri-
buted 0.2 Mg CO,-eq./ha/year (Fig. 8).

S0C and biochar

There were no SOC stock changes in the soil in the re-
ference scenario, since the SOC was assumed to have
reached a steady state before the start of the study
period. The climate impact in willow scenario a due to
SOC stock changes when switching land use from maize
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to willow was — 0.7 Mg CO,-eq./ha/year. The carbon se-
questered in the biochar applied to the soil contributed
an additional - 1.0 Mg CO,-eq./ha/year (Fig. 8).

Substitution of fossil alternatives

The climate impact for the equivalent amount of natural
gas compared with the biomethane produced in the ref-
erence scenario and two willow scenarios a and b is
shown in Fig. 9. Emissions for the natural gas relate to
the production, distribution, and combustion of natural
gas. Comparing the scenarios based on the FU of GJ bio-
methane output revealed that the reference scenario
(0.030 Mg CO,-eq/G] biomethane) showed good per-
formance in terms of climate impact in comparison with
a natural gas-based scenario (0.100 Mg CO,-eq/GJ bio-
methane). However, better performance was obtained in
willow scenario a (- 0.004 Mg CO,-eq./G] biomethane),
in which biochar was assumed to act as a soil amend-
ment (Fig. 9). In willow scenario b, it was assumed that
the exported heat substituted an equal amount of heat
produced from a CHP using natural gas and that the
biochar substituted 3 Mg of fossil coal used as an energy
source. The net climate impact of willow scenario b was

-0.026 Mg CO,-eq./GJ biomethane. The exported heat
from willow pyrolysis could thus potentially substitute
0.1 GJ of fossil-based heat per GJ of biomethane output,
reducing the climate impact by 0.006 Mg CO,-eq./ha/year
(Fig. 9). Alternative use of biochar for energy could substi-
tute 0.3 GJ of hard coal per GJ of biomethane output and
reduce the climate impact by 0.02 Mg CO,-eq./GJ bio-
methane. Thus, in the case considered in this study, the
use of the biochar as an energy source and accounting for
its replacement of fossil coal resulted in a lower climate
impact than the use of the biochar as a soil amendment.

Sensitivity analysis
In studies assessing different scenarios, it is important to
determine the impact of uncertainties and assumptions on
the results and their interpretation. In this study, a sensi-
tivity analysis was performed to evaluate the influence of
changing the electricity mix, methane emissions from the
upgrading step, and the yield of maize and willow on the
results from the different scenarios (Figs. 10 and 11).

In the base case, an electricity mix for the Nordic
countries (NORDEL) was used in the calculations. This
was changed to electricity based on hard coal in the
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Fig. 9 Climate impact of the reference scenario, the willow scenarios a and b, with physical allocation and system expansion and a natural gas-
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sensitivity analysis. Primary energy factors and emission
values for the hard coal and NORDEL electricity mix
used in the sensitivity analysis are shown in Table 1.

The sensitivity analysis showed that using a hard coal
electricity mix considerably increased the PE use for the
reference scenario and willow scenario a to 0.26 and
0.14 GJ/GJ biomethane output, respectively. The climate
impact in the reference scenario and willow scenario a
increased to 0.063 and 0.024 Mg CO,-eq./G] biomethane
output, respectively.

A 30% yield increase in the second rotation of willow
crop due to new clones with higher nutrient use effi-
ciency and faster growth rate had a considerable effect
on the climate impact. The total reduction in GHG
emissions was —0.011 Mg CO,-eq./GJ biomethane out-
put. This potential for climate impact mitigation was the
result of an increase in carbon sequestration in the bio-
char pool in the soil. A 30% yield increase for maize had
no marked effect on the climate impact of the reference
scenario. The 30% yield increase increased the PE input
in the reference scenario to 0.22 GJ/GJ biomethane

output but with no significant increase in willow sce-
nario a. A yield decrease gave no significant change in
the PE input and climate impact of the two scenarios in
relation to other parameters.

Increased methane losses in the upgrading stage to 2%
resulted in an increase in GHG emissions to 0.043 and
-0.002 Mg CO,-eq./GJ biomethane output for the refe-
rence scenario and willow scenario a, respectively. Redu-
cing the methane losses to 0.1% by using an amine
scrubber instead of a water scrubber reduced the climate
impact to 0.031 and - 0.006 Mg CO,-eq./GJ biomethane
output for the reference scenario and willow scenario a,
respectively.

Discussion

In this analysis, changing land use and conversion tech-
nology from using maize in an AD plant to using willow
in a pyrolysis plant when producing biomethane led to a
clearly improved energy performance and reduced the
climate impact from a land use perspective. With 52%
less energy input, the willow scenario had almost double
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the output to input energy ratio achieved in the refe-
rence scenario. Willow scenario a had higher climate im-
pact mitigation potential due to the carbon sink created
by the biochar, which is very stable and retains part of
the CO, sequestered in willow biomass for a prolonged
period. Furthermore, short-lived SOC increased due to
the land use change, which also contributed to mitiga-
ting the climate impact of willow scenarios a and b.
Thus, willow scenarios a and b had the potential to pro-
duce biomethane and heat, while counteracting global
warming at the same time. However, in the biomethane
production scenarios (reference, willow a), substitution
of an equivalent amount of natural gas led to a clear
reduction in global warming potential.

Considering the different unit processes, agricultural op-
erations had a larger climate impact for maize than for
willow. In both scenarios, the major climate impact was
related to N,O emissions from the soil due to fertilizer
use. The actual levels of N,O emissions from soil are
uncertain, as they are mainly influenced by local parame-
ters. However, the most crucial parameter is the level of
nitrogen available in the soil. Precision fertilization and
practices to improve the efficiency of plant nitrogen up-
take can lead to lower N,O emissions [80, 81]. Approxi-
mately 14% of GHG emissions in the reference scenario
were related to the handling of the digestate (storage and
spreading). Management of digestate is important to
minimize emissions from agricultural operations. Manage-
ment strategies such as shallow injection of liquid diges-
tate reduce nitrogen losses. Storage of digestate is also
important, with many studies showing that open-air diges-
tate storage leads to high levels of CH, emissions. These
could be avoided by storing the digestate in covered tanks
and capturing the methane generated [62]. The energy
intensity of machinery in agricultural operations such as
field preparation and sowing, and related diesel consump-
tion, was much higher in the annual maize cropping
system than in the perennial willow cropping system.
According to [82], maize cultivation requires high me-
chanical and chemical inputs, especially to combat weeds
and pests. Options to reduce the high energy and ma-
terial inputs to the maize agro-ecosystem include a
careful choice of variety, cultural control measures,
biological control, and optimization of pesticide appli-
cation techniques [83].

Biomass conversion and upgrading to biomethane in
the willow scenarios had a much lower energy input
than in the reference scenario. This was mainly due to
the lower electricity use and efficient heat recycling
within the pyrolysis reaction processes (e.g., pyrolysis,
fuel synthesis, and reformer), while the AD in the refe-
rence scenario required much electricity to pump and
stir the slurry. The GWP was considerably lower for
pyrolysis, which was the biomass conversion step in the
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willow scenarios. This was mainly due to no methane
emissions from the process units (i.e., pyrolysis reactor,
pre-reformer, methanation). The upgrading unit contri-
buted to the climate impact mainly due to methane slip
and electricity use. In this study, a water scrubber with
specific power consumption of ~0.2 kWh/Nm?® was
assumed, since it is the dominant upgrading technology
used during the past decade, with 40% market share
[84]. The PE input per hectare and year to the upgrading
of biogas was eightfold higher in the reference scenario
than in the willow scenarios. This could be due to the
methanation of CO, and reverse water-gas shift reac-
tions over the pyrolysis gas in the fuel synthesis step,
which converts a large part of the gas to CH, before en-
tering the upgrading unit. The CH,4 loss, which was set
to 1% of the biomethane produced in the upgrading of
biogas, was an important contributor to GWP in the ref-
erence scenario. With an increase in the methane slip to
2%, the GWP increased considerably. An option to re-
duce the PE input and the methane emissions could be
to choose an amine scrubber, which has a significantly
lower electricity demand (~0.12—0.14 kWh/Nm? de-
pending on plant size) and a methane slip of ~0.1%
[85], but an external heat requirement for regeneration
of the amine solution of about 0.55 kWh/Nm?> [84].
However, setting the methane loss to 0.1% in the sensi-
tivity analysis did not significantly reduce the GWP in
the reference scenario.

Heat and biochar, co-products of the willow pyrolysis,
have alternative uses where they can substitute fossil
fuels. In willow scenario b, the climate impact was lower
when the biochar was used for substituting fossil coal
rather than as a soil amendment (willow scenario a).
This was mainly due to the high climate impact related
to the production, distribution, and especially use of
coal. Heat produced from a natural gas-based CHP also
had a significantly higher climate impact than heat pro-
duced through willow pyrolysis. The sensitivity analysis
showed that the PE input and the climate impact in both
scenarios were most influenced by changing the electricity
source to a mix based on hard coal. Choice of electricity
mix also had a considerable impact on the results of our
previous LCA studies of bioenergy scenarios [52, 86].
Changing the origin of electricity was the only factor in
the sensitivity analysis that gave a positive GWP value in
willow scenario a.

In this study, we assumed a biomethane plant based on
an existing maize cropping system with a steady-state soil
carbon level in the reference scenario. Transition to a
willow-based system thus led to a direct land use change
but not an indirect land use change since the product
from the land did not change. Agricultural land dedicated
to biofuel production should nevertheless be used in an
energy-efficient manner, considering all potential climate
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impacts. Overall, the results from the present analysis
show that transition from a maize-based to a willow-based
biomethane production system would improve the energy
performance and has the potential to mitigate global
warming by introducing soil carbon sequestration. How-
ever, there are many uncertainties associated with the soil
emissions models (e.g., biogenic carbon flux and N,O soil
emissions) and with the accuracy of the input data. Bio-
genic carbon dynamics are complex, and often, there are
few empirical data available [87]. There are also large
uncertainties related to the estimation of N,O emissions
in climate impact assessments of crops used for biofuels.
The IPCC default values [78] used for estimating these
emissions are general values which do not consider site-
and crop-specific conditions.

Many studies have applied LCA perspectives for asses-
sing the energy balance and climate impact of bioenergy
systems (e.g., [53]). However, the wide variation in systems
borders, scope, feedstock, etc. complicates the comparison
of the results of different studies.

Furthermore, the economic feasibility of systems is im-
portant and is likely to be a strong constraining factor
when trying to implement pyrolysis instead of AD.
While this study was based on modeling, the findings
suggest incentives for further technical development and
studies regarding pyrolysis of short-rotation coppice wil-
low. Moreover, other environmental impact categories,
such as eutrophication, acidification, and ecotoxicity po-
tential, would be of interest in future studies, especially
considering the emissions from pesticides and chemicals
used in crop cultivation. In efforts to assess the readiness
of future technological development and implemen-
tation, life cycle cost assessments (LCCs) and technical
assessments are needed in order to provide better
decision support.

Conclusions

The transition from maize-based anaerobic digestion to
a willow-based pyrolysis system for biomethane produc-
tion led to increased energy performance and negative
global warming potential. Application of biochar to the
soil in the willow scenario contributed significantly to
counteracting emissions of GHGs. However, when a
hard coal electricity mix was considered instead of the
Nordic electricity mix, the willow pyrolysis scenario had
no net negative climate impact. Both biomethane scena-
rios reduced the climate impact in comparison with a
fossil natural gas-based system.

Additional file

Additional file 1: Table S1. Agricultural operations and inputs in maize
cultivation, data presented per ha and year. Table S2. Yearly agricultural
operations and inputs in willow cultivation, data presented per ha and
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year. Table S3. Primary energy (PE) use and greenhouse gas (GHG)
emissions from the production of different inputs to agricultural
operations. Figure S1. Energy and mass inputs/outputs to the biomass
conversion plant and gas upgrading in the willow scenario, data
presented per MW. Table S4. Energy demand/supply of the pyrolysis
plant in the willow scenarios, a calculation based on [29], data presented
per MW. Table S5. Input values used in ICBM for modeling soil organic
carbon (SOC) pools in the reference and willow scenarios, data presented
per Mg and ha. (DOCX 80 kb)
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