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Abstract 

Background:  In recent years, the monitoring of occupant presence patterns has become an imperative for building 
energy optimization. Very often, there is a significant discrepancy between the building energy performance pre-
dicted at the design stage and the actual performance rendered during the building operation. This stems from the 
difference in user occupancy. In spite of this, user interaction and feedback are rarely taken into account and evidence 
of the impact of occupant presence patterns on energy consumption is still scarce. Thus, the purpose of this study is 
to apply crowd-sensing techniques to understand how energy is consumed and how appropriate performance indi-
cators should be defined to provide inputs for building operations regarding more efficient use of resources.

Methods:  Monitoring strategies were implemented in an office lab with controlled variables to collect quantitative 
data on occupancy patterns, ambient factors and energy consumption. In addition, crowd-sensing techniques were 
applied to model user activity in different ambient conditions over time and to contrast their occupancy with energy 
consumption patterns in combination with new inquiry tools to identify how occupants perceive their comfort level. 
In addition, a set of energy efficiency indicators was used to compare energy performance over different periods.

Results:  It was discovered that there is a strong relation between user occupancy patterns and energy consump-
tion. However, more than 50% of energy was consumed when no user activity was registered. Energy performance 
indicators revealed that measuring energy efficiency in terms of kWh per surface area encourages a less efficient use 
of space and, therefore, including a coefficient of person hours is advisable. It was also discovered that users do not 
fully rely on feedback mechanisms and they prefer to take action to adapt the ambient conditions rather than simply 
expressing their opinion. Analysis of energy usage during the Covid-19 lock down revealed substantial use of energy 
contrary to what was expected. This was because home computers were used as terminals only, while the actual tasks 
were performed on the lab computers, using remote desktop connections, which were turned on 24/7. In addition, 
energy consumed by each employee at his/her home should be taken into account. Moreover, a set of practical rec-
ommendations was formulated.
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Background
In recent years, monitoring of user occupancy has 
become an imperative for building energy1 optimiza-
tion, as it was realized that buildings do not consume 
energy by themselves but rather it is their occupants 
who create the energy demand and expect it to be sat-
isfied. It is widely accepted that there is very often a 
significant discrepancy between building energy per-
formance predicted at the design stage and the actual 
performance delivered when the building is in opera-
tion due to the difference in user occupancy [1–3]. In 
the design phase, the operational energy consumption 
is typically simulated using standard occupancy sched-
ules [4]. Such predictions may differ by 46% from the 
real energy demand [5]. What is more, lack of proper 
adaptation of building management based on user 
occupancy may lead to a 30–50% waste due to misuse 
and non-optimal management [6]. In addition, there is 
a mismatch between initially designed and real build-
ing uses (activities, occupancy, etc.) which evolve con-
tinuously. Changes in building experience over time are 
refurbished or repurposed, used in different ways or 
host completely different activities than those they were 
designed for. These circumstances have direct implica-
tions on building performance and demand new strat-
egies for better user occupancy and energy demand 
sensing to perform in an optimal way.

Influence of user occupancy patterns on energy 
consumption
Occupancy pattern reflects the way a building (or a 
part of a building) is used. It allows to see the relation-
ship between space, the number of users and the time 
they spend in it. It is an important part of user behavior 
which additionally includes occupants’ interactions with 
operable windows, lights, blinds, thermostats, and all 
appliances that allow to adjust indoor conditions [3]. The 
importance of user occupancy patterns for energy effi-
ciency has been stressed in numerous studies for over a 
decade, e.g., in [7–14]. In spite of this, in real world cases, 
occupancy of tertiary buildings is rarely monitored in a 
reliable way, and the estimations often rely only on the 
observations of facility managers or surveys that may 
present inaccurate results [15]. Ericson et  al. [16] dem-
onstrated the potential for 42% energy savings using real 
time occupancy data based on a sensor network, and 
Taylor [17] has shown over 10% energy cost savings in a 
large-scale sample of 280 buildings.

The COVID-19 pandemic showed very clearly the 
impact of occupancy on energy consumption. Previously, 
there was a strong emphasis on promoting interaction 
between co-workers which was reflected in the building 
design [18]. However, the pandemic has changed human 
behavior and limited interactions drastically. Social dis-
tancing and teleworking have had a substantial impact on 
working conditions and significantly altered energy con-
sumption patterns.

Energy consumption and user comfort balance
Another challenge is how to achieve a balance between 
the optimal use of energy and comfortable conditions 
for the users. Since people spend a large part of their 
life indoors, the sensation of comfort or discomfort can 
have a great impact not only on their productivity, but 
also on their health and general well-being [19]. This is 
why user comfort should always be taken into account 
as an integral part of energy management strategies [20]. 
For this reason, various indoor comfort standards were 
developed, such as the American Standard ASHRAEE 
55 [21], or European ISO Standard 7730 [22], both aimed 
at defining the optimal indoor comfort level for working 
conditions. Despite the validity of these standards, gaps 
between the defined comfort conditions and those expe-
rienced by occupants have been perceived [1]. People 
from different geographical locations have shown differ-
ing comfort expectations depending on where they come 
from [1]. Other factors, such as differences between 
genders may also play a role [23]. Moreover, controls 
of heating, air conditioning, window opening or even 
light are often inaccessible to users due to a lack of will 
or for safety reasons, leaving individual preferences and 
comfort needs unaddressed. This is why the opinions of 
users should be considered as complementary to comfort 
standards to efficiently manage energy usage, on the one 
hand, and ensure comfortable indoor conditions, on the 
other.

Acquisition of energy‑related user behavior data
Understanding the way in which energy is consumed, 
requires awareness of user activity and space occupancy. 
A variety of methods which rely on human researchers, 
such as surveys, focus groups or human observation, 
have been used in behavioural studies for this purpose 
[24]. However, collecting accurate, longitudinal data on 
user presence patterns still remains a challenge.

Historically, building occupants have been underuti-
lized as a source of information, while the key to ensur-
ing a balance between energy efficiency and comfort 
lies in data on user occupancy in conjunction with their 
feedback and opinion [25]. However, recently many 

1  This article concerns only electrical energy. Therefore, within the context of 
this article, energy should be understood as electrical energy.
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alternative approaches became available to deal with this 
issue. Salimi and Hammad [26], based on a profound lit-
erature review, distinguished the following types of occu-
pancy monitoring techniques: (1) Motion sensors that are 
used to determine the occupant presence in a space with-
out determining their location; (2) Vision-based localiza-
tion technologies that take advantage of static cameras to 
acquire information regarding occupant presence, loca-
tion, number, and type of activity; (3) Radio frequency-
based localization technologies that allow for detection 
and positioning of an object in a space; (4) Multi-sensor 
networks that combine different monitoring technolo-
gies, e.g., motion sensors and CO2 sensors; and (5) Sur-
veys and in-person observation which are also used for 
collecting occupancy information either combined with 
other tracking technologies or alone. Moreover, virtual 
occupancy sensors are an alternative to special purpose 
occupancy sensors that use desktop activity or energy 
meters to provide indication of occupants’ presence with-
out having to install special purpose occupancy sensors.

Independently, Rueda, et al. [27] identified the follow-
ing occupancy detection methods: (1) passive infrared 
sensors to detect motion; (2) environmental sensors, e.g., 
CO2; (3) smart meters that reveal occupancy based on 
energy consumption; (4) Wi-Fi and Bluetooth that detect 
the presence of smart devices, and (5) sensor fusion—a 
mixture of the above-mentioned approaches.

Also, regarding the degree of granularity, Salimi and 
Hammad [26] distinguished four levels of occupancy 
modelling: The first one is a monitoring at the building 
level to reveal the number of occupants. The second one 
shows the state (occupied/unoccupied) of specific spaces 
within a building. The third one, considers the number 
of occupants in specific building spaces; and the fourth, 
occupancy modelling at the occupant level, which pro-
vides information on activity of each individual.

This study uses a crowd-sensing approach that takes 
advantage of Wi-Fi connectivity combined with motion 
sensors, smart meters and in-person observation for 
validation purposes. In addition, environmental sensors 
and surveys are used to collect data on user’s comfort. 
Regarding the levels of occupancy monitoring, this study 
falls within the fourth category, since it evaluates activity 
of each occupant.

Crowd-sensing is an emerging paradigm that empow-
ers users to provide data sensed or generated from their 
mobile devices (telephones, wearables, etc.). It exploits 
the concept of a human sensor to provide an insight on 
occupancy patterns, improving observability of spaces 
and the way users interact with the indoor environment 
[28]. Since energy consumption in buildings depends in 
a large part on user activity [16], crowd-sensing may sup-
port energy management by providing highly valuable 

information on occupancy and user interaction, but also 
gives the users the possibility of expressing their needs.

Methods
This paper examines the relation between users’ indoor 
activity and energy consumption and provides practi-
cal recommendations regarding a more efficient use of 
resources. It aims to: identify occupancy patterns and 
find out to what extent these patterns are correlated with 
energy consumption; verify importance of user activ-
ity on energy consumption with a set of performance 
indicators; examine the possible relation between users’ 
comfort and energy consumption; and find out how 
COVID-19-related lock down affected the user behavior 
and energy consumption.

For this purpose, an experiment was carried out in 
an office lab to monitor user activity and related energy 
consumption (objective data), as well as the level of user 
comfort (subjective data). For comparison purposes, the 
data was collected in four 4-week periods: spring, sum-
mer, autumn and winter. The details of the case study are 
presented in “Case study description”, “Time span of the 
case study”, “Participants of the case study”, “Objective 
vs. subjective measurements” and “Data preparation and 
preprocessing” sections.

Case study description
Monitoring strategies were implemented in an office lab 
with controlled variables to facilitate the validation and 
collection of qualitative data. This aimed to model the 
user presence and energy consumption patterns in dif-
ferent indoor environmental conditions. The experi-
ment took place in a research facility building located in 
Girona, Spain, with a Mediterranean climate and with 
maximum average temperatures of 18.3  °C in February 
and of 33  °C in July [29]. The office lab, with a surface 
area of 72 m2 and illuminated with fluorescent light-
ing was chosen to carry out the study. The lab consisted 
of 16 workstations with desktop computers and had 
been equipped with sensors measuring environmen-
tal indoor conditions. The workstations were numbered 
1–16 according to energy supply sockets (workstation 
13 is shared) and the location of four sensor kits were 
marked with blue icons and can be seen in Fig. 1. In addi-
tion, each workstation was equipped with sensors meas-
uring energy consumption. The sensors were installed 
in accordance with the manufacturer’s specification to 
cover the entire floor area. For this purpose, also a series 
of tests was carried out in which the occupants entered, 
moved around and left the lab. At the same time, their 
behavior was observed and compared with the data sent 
by the sensors in real time. It turned out that there was 
no case of a place, where the occupant’s activity was not 
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detected, and vice versa, where the presence of a person 
outside the laboratory was mistakenly considered. More-
over, the order of detection allowed for the identification 
of the movement of users inside the laboratory. In addi-
tion, the sensor data was verified with crowd sensing data 
from the users’ mobile devices to obtain a reliable occu-
pational pattern.

According to Pérez-Lombard et  al. [30], heating and 
air conditioning accounts for 50% of the energy con-
sumed in office buildings, while the other 50% is due to 
user-related activities, such as lighting and appliances. 
This study specifically focuses on energy consump-
tion due to user-related activities. For this reason, the 
energy consumption of the workstations and light-
ing were taken into account as these two elements are 
directly influenced by user activity. Central heating 
and air conditioning systems were not included in this 
study as these are centrally managed and their energy 
consumption does not depend on the number of users. 
Furthermore, the relation between temperature and 
energy consumption due to the heating and air con-
ditioning systems is clear and has been the subject of 
many previous studies [31–33].

Time span of the case study
Building energy behavior tends to show some typical 
annual, weekly and daily patterns [34]. Thus, to measure 
possible differences in occupant presence patterns and 
energy consumption patterns over different time periods, 
the experiment was divided into two phases. The first 
phase covered a 4-week period in July 2019 and a 4-week 
period in February 2020. Later, in the second phase, the 
results of the experiment were compared with two other 
4-week periods: spring and autumn 2020.

Participants of the case study
There were 16 users (employees, occupants: 2 females 
and 14 males) in the summer period and 14 users (2 
females and 12 males) in the winter period, as well as 
4 users in the autumn period. Due to the lock down 
caused by the COVID-19 pandemic, user participation 
in the spring period was not possible. The employees 
performed their usual daily tasks without being advised 
that their energy-related behavior was being monitored 
to prevent the results being altered. However, they were 
asked to provide feedback on their satisfaction with com-
fort level and also had the possibility of adjusting some 
of the factors influencing their comfort (light, access to 

Fig. 1  Overview of the 72m2 office lab where the experiment took place
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the thermostat, the possibility of opening windows). An 
automatic reminder was set up to notify the users about 
giving their opinion. One of the authors of this article 
was also present in the case area throughout the whole 
duration of the experiment.

Objective vs. subjective measurements
To uncover user presence patterns and their possible 
relationship with energy consumption and environmen-
tal factors, two types of data sets were required: objective 
(sensor-based) and subjective (user-based).

Objective aspects were strictly related to energy 
behavior (time and amount of energy used per worksta-
tion), environmental indoor measurements (tempera-
ture, humidity, pressure, noise level, light, door/window 
opening) as well as occupancy (time and space). Many 
studies attempt to increase energy efficiency using occu-
pancy schedules for simplicity and due to a lack of read-
ily available data [12]. In this study, real occupancy data 
from sensors combined with crowd-sensed data from the 
users’ mobile devices were used. These data were comple-
mented with external environmental data deriving from 
the weather station installed outside the lab and energy 
consumption data. All types of data were stored with a 
frequency of 10-min intervals.

Subjective aspects were associated with the occupants’ 
perceived comfort levels. For the collection of the sub-
jective data, crowd-sensing techniques were applied. To 
uncover the occupancy patterns and find out users’ opin-
ion on comfort levels, a mobile app was developed and 
the occupants were asked to voluntarily install it on their 
devices. The app recognized users’ location based on the 
Wi-Fi signal and gave users the possibility of express-
ing the level of comfort with regard to four aspects in 
accordance with the scale for comfort and temperature 
sensation proposed by Gagge et al. [35]: general comfort 
(comfortable, slightly uncomfortable, uncomfortable, 
very uncomfortable); thermal comfort (cold, slightly cool, 
slightly warm, hot); visual comfort (very dark, slightly 
dark, slightly bright, very bright) and acoustic comfort 
(silent, slightly noisy, noisy, very noisy). The app pre-
sented this scale in an intuitive and user-friendly manner, 
as shown in Fig. 2.

It must be stressed that the use of personal devices 
for data collection of user occupancy patterns may raise 
concerns regarding privacy violations and security risks. 
Therefore, for the purpose of this study, the participants 
were assured that data would be aggregated in order not 
to reveal personal details.

Data preparation and preprocessing
Assuring good quality of data is essential for data analyt-
ics to obtain reliable results and in consequence, draw 
accurate conclusions. Therefore, prior data preparation 
was necessary. For the purpose of this experiment, the 
following data sets, encompassing 4-week periods each, 
were obtained:

•	 July 2019 (summer)—objective, sensor-based data 
and subjective users opinion;

•	 February 2020 (winter)—objective, sensor-based data 
and subjective users opinion;

•	 April 2020 (spring)—objective, sensor-based data;
•	 November 2020 (autumn)—objective, sensor-based 

data.

First, objective and subjective data sets were merged. 
The objective data were saved with a 10-min frequency; 
however, the subjective data were saved asynchro-
nously at the time the users provided feedback. For this 
reason, the time stamp of the subjective data sets was 
rounded to the nearest 10 min and both data sets were 
merged. Then, to deal with the missing values in sen-
sor-based data sets, an interpolation for cyclic weekly 
data was created—a linear interpolation between the 
last known week, day, hour, and minute with the next 
known same week, day, hour, and minute. For initial or 
final missing values, the last available day values were 
used, and in case of variables, such as temperature, the 
closest known value was used.

Fig. 2  User interface of the app for crowd sensing the occupants 
behavior and feedback on level of comfort sensation
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The light consumption data, which presented some 
error values due to a temporary malfunction of the sen-
sor, were recreated based on the occupancy pattern. 
Due to the low amount of natural light in the lab, artifi-
cial illumination is always used whenever users are pre-
sent (regardless of the number of occupants); therefore, 
the curve of energy consumption due to lighting fol-
lows the occupancy pattern. Taking this into account, 
and the fact that energy consumption of lighting is 
almost binary—0 when it is off and approximately 23 
Wh (Light 1) and 56 Wh (Light 2) when it is on—the 
corrupted data were recreated according to the occu-
pancy pattern.

The fact of performing such data pre-processing allows 
for further analysis, reliable results to be obtained and, in 
consequence, well-founded conclusions to be drawn.

Results
User occupancy and energy consumption patterns
Energy consumption patterns and their relationship 
with user activity, comfort and environmental factors 
were investigated to uncover the energy saving potential. 
Unlike residential buildings, where the behavior of inhab-
itants is not conditioned by strict time schedules, occu-
pancy of office buildings is usually a result of well-defined 

timetables. However, the number of occupants varies 
throughout the day. Thus, occupancy patterns and their 
relation with energy consumption have been examined 
in the example of the office lab. As Fig. 3 demonstrates, 
the number of users increases from around 9:00 am and 
reaches its peak just before the midday. Then, around 
1:00–2:00  pm it decreases as a result of the lunchtime 
break, and rises slightly again in the early afternoon, 
going down completely at around 6:00  pm when users 
leave for home. This pattern has been obtained from 
averaged values encompassing a period of 4  weeks and 
has proved to be very similar for all weekdays. In addi-
tion, on Monday and Wednesday some minor activity 
can be observed before 9:00 am due to the cleaning ser-
vice which maintains the lab twice a week.

A strong correlation between user occupancy patterns 
and energy consumption can be noticed as both curves 
are relatively parallel. In addition, the Pearson correlation 
coefficient was calculated to verify this observation. This 
indicator calculates the correlation between two vari-
ables and returns to a value from −1 to 1, where −1 rep-
resents a total negative correlation and 1 a total positive 
correlation, whereas 0 denotes no correlation [36]. The 
result of 0.93 was obtained, confirming a strong positive 
correlation.

Fig. 3  Relation between occupancy pattern (user behavior)
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Nevertheless, a significant use of energy is observed 
even in periods with no user activity: evenings, nights 
and weekends. This is due to the consumption from three 
servers and some workstations executing computation 
tasks which are turned on constantly. The total energy 
consumption generated by users of the office lab, dur-
ing the two 4-week periods—summer 2019 and winter 
2020—is summarized in Table 1.

This clearly demonstrates that in spite of an unques-
tionable correlation between energy use and occupancy, 
the majority of energy consumption (52% in the sum-
mer period and 61% in the winter period) occurred after 
hours when no user activity was registered.

To get a better picture and identify the major sources 
of consumption, the energy demand of the workstations 
was compared for the summer and winter periods in 
Fig. 4.

As Fig.  4 shows, workstations 1, 5, 11, 12, 13, 15 and 
16 were the most energy intensive with consumptions 
exceeding the mean value. The distribution of appliances 
in the lab shown in Fig. 1 helps to understand this result. 

In the summer period, workstation 1 was shared with a 
server, which was later removed. This explains the signifi-
cantly lower energy consumption in the winter. On work-
station 5, a very powerful machine was used to process 
complex tasks which resulted in higher consumptions 
than those of the other workstations. Occasionally some 
other devices were also plugged in, which impacted the 
total consumption. The same applies to the workstation 
12 in the winter period. Workstation 11 was turned on 
almost all the time in the summer period and turned off 
for the weekends in the winter, which explains the differ-
ence in consumption between these two periods. Num-
ber 13 encompasses two workstations located in close 
proximity, and workstations 15 and 16 were shared with 
servers. Thus, the major factors that influenced energy 
consumption were servers and computers which were 
switched on constantly.

Energy efficiency indicators
To obtain a deeper insight and to measure energy effi-
ciency of the office lab, a set of indicators was used. The 
most common one correlates energy consumption with 
space area (kWh/m2); however, it was argued by Huovila 
et al. [15] that it may be useful at the design and planning 
stage but it omits the actual user activity which is crucial 
in the building operation phase. User activity has enor-
mous impact on building energy performance which may 
lead to a considerable discrepancy between the predicted 
and actual energy consumption of buildings [37, 38]. For 
this reason, understanding the human activity and inter-
play of building occupancy and energy consumption is 
essential. This is why the kWh/m2-indicator was comple-
mented with others that consider the human factor: (1) 

Table 1  Comparison of energy consumption in summer and 
winter periods

a At least one person present
b No users present

Summer 2019 Winter 2020

kWh % kWh %

Total energy consumption 543.2 100 555.2 100

Energy consumption working hoursa 259.0 48 216.8 39

Energy consumption afterhoursb 284.2 52 338.3 61

0
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20
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40
50
60
70
80
90

100

kW
h

Summer Winter Summer mean Winter mean
Fig. 4  Comparison of energy consumption per workstation in the summer and the winter period
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kWh/person which correlates the use of energy with the 
number of occupants; (2) kWh/person hours, which cor-
relates the energy consumption with the actual sum of 
the number of hours that users spend in the building, or 
the specific area, during the given period of time which 
for the purposes of this study were periods of 4  weeks; 
3) kWh/m2 person hours, which combines indicators (1) 
and (2), to take the floor area into account as well as the 
occupancy time according to the formula:

Energy per area per occupied hours = kWh

m2h
=

kWh

m2

h
× 1000 , 

where kWh is the amount of energy consumed over the 
given period of time, m2 is the floor area of the space in 
question, and h is the number of hours the space was 
occupied during the given period [39].

The energy performance of the office lab according to 
these four indicators is compared in Table 2. In addition, 
for comparison purposes, the numbers of kWh per work-
station and kWh per person were included.

In spite of a greater number of users, perversely less 
energy was consumed in the summer period. However, 
the difference of 2.2% is within acceptable limits. The 
Spanish norm for occupancy defines the standard as a 
minimum of 5 m2 per person for this type of space [40], 
which means that in the summer period, the office lab 
was slightly over-occupied with only 4.5 m2/person. This 
translated into higher energy efficiency as shown by other 
indicators. It is worth noting that the difference between 
these two periods is particularly noticeable in terms 
of those indicators that involve a human factor. This is 
because factors of energy use which are dependent on 
the number of users are higher, while the floor area of the 
building remains constant [15].

COVID‑19 lock down and post lock down impact on office 
energy efficiency
The year 2020 was unprecedented and differed from pre-
vious years in many aspects among which energy use and 
energy related human activity are no exception. In Spain, 
during the spring and summer of 2020, users carried out 
all their tasks from home due to the lock down. Then, in 
the autumn, employees returned to their offices, but only 
partially, with limited hours and working partially from 
home. Table  3 shows the energy consumption of the 
office lab in these two periods.

It can be seen that in spite of the lack of physical pres-
ence of employees in the spring period, energy con-
sumption is significantly higher than in the autumn 
when employees partially returned to the office. At first 
glance, this could be interpreted as an inverse relation-
ship between occupancy and energy consumption. How-
ever, it is because some employees used home computers 
as terminals only, while the actual tasks were performed 
on the lab computers using remote desktop connec-
tions. These computers were not turned off every day 
after work (as normally happens), but were turned on 
24/7 instead, which explains higher energy consumption. 
Since during the autumn period, work was carried out in 
a semi-remote mode, the energy consumption was lower. 
However, even still, the greater amount of energy (78%) 
was consumed after hours. Nevertheless, it is important 
to stress that for both spring as well as autumn periods, 
the significantly lower energy consumption in compari-
son with the summer and winter periods was caused 
by the fact that energy consumed by the employees at 
their homes was not considered, although it should be 
included. However, collecting such data are challenging, 
and therefore, it may be the subject of a separate study.

To gain a deeper insight and show how the drastic 
change of user occupant presence patterns (home work-
ing) caused by the COVID-19 outbreak impacted energy 
efficiency, a set of indicators has been calculated for the 
spring and autumn periods and presented in Table 4.

Comparison of values from Table  2 and shows how 
consideration of occupancy is important for providing a 
more realistic picture of the situation. The kWh/m2 indi-
cator for spring and autumn is clearly lower than in the 

Table 2  Comparison of energy indicators of the office lab in the summer and winter periods

m2 No. of users kWh m2/person kWh/m2 kWh/
workstation

kWh/person kWh/person 
hours

kWh/ m2, 
person 
hours

Summer 72 16 543.2 4.5 7.5 28.2 34.0 3.1 43

Winter 14 555.2 5.1 7.7 29.3 39.7 3.9 54

Table 3  Comparison of energy consumption in spring and 
autumn periods

a At least one person present
b No users present

Spring 2020 Autumn 
2020

kWh % kWh %

Total energy consumption 420.4 100 322.7 100

Energy consumption working hoursa – – 72 22

Energy consumption afterhoursb – – 251 78
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summer and winter periods which may suggest higher 
efficiency. However, when looking at the indicators that 
include human activity, a more realistic overview can 
be obtained. kWh/person, kWh/person hours, as well 
as kWh/m2/person hours are higher in the autumn than 
in the summer and winter periods (obtaining these indi-
cators for the spring period was not possible due to the 
lock down). This is because the more effectively a space is 
used, the more it consumes in absolute numbers and less 
regarding the number of users. In addition, the higher 
the occupancy and space efficiency, the less the build-
ing or space tends to appear efficient when the indicator 
of energy consumption per floor area is used (kWh/m2), 
since a greater number of users produce a higher energy 
demand, while the floor area remains constant [39, 41].

User’s perception of indoor comfort conditions
User feedback on comfort was investigated to discover 
the possible relationship between energy consumption 
and comfort levels. Comfort can be defined as a condi-
tion of mind which expresses satisfaction with the envi-
ronment [42]. Energy consumption may have a direct 
impact on such a steady state sensation. For this reason, 
during the summer and winter periods, users were asked 
to use a mobile crowd sensing app and provide feedback 
on their level of comfort. Figure 5 shows the comparison 
of general, thermal, visual and acoustic comfort levels in 
the summer and winter (calculated as the proportion of 
votes for each category over the total number of votes).

The general comfort in the summer and in the win-
ter was close to optimal with 69% and 80% of opinions 
being comfortable or slightly uncomfortable, respectively. 
The result of thermal comfort in the summer period, 
however, is not so clear with 38% slightly cool and only 
20% hot. Especially surprising is 2% of cold in the sum-
mer voted when the indoor temperature during work-
ing hours fluctuated between 26.7 and 28.7  °C, while 
the European standard EN 15,251 [43] defines the sum-
mer comfort temperature in the range between 23 and 
26 °C. Figure 6 shows that there is no strict relationship 
between temperature and the thermal comfort sensation 
of users. In particular, it can be seen that the same range 
of temperatures (25  °C–26  °C) is considered as slightly 
cool or even cold in the summer, while it is considered 
slightly warm or even hot in the winter. However, for a 
better understanding of this phenomenon, a separate 
study is necessary that includes a set of different factors 
that can influence the feeling of thermal comfort, such as 
the different clothing level.

It can be also observed that the lighting conditions were 
close to optimal (Fig.  7). The greatest number of votes 
(81% in the summer and 71% in the winter) described vis-
ual comfort as slightly bright. According to the European 
standard UNI EN 12464–1 [44], a comfortable minimum 
illumination level should be between 500 and 700 lx and, 
indeed, the light intensity in the lab was maintained at 
the level of > 500  lx almost all the time throughout the 
experiment. In practice, on many occasions it was much 

Table 4  Comparison of energy indicators of the office lab in the spring and autumn periods

m2 No. of users kWh m2/person kWh/m2 kWh/
workstation

kWh/person kWh/person 
hours

kWh/m2, 
person 
hours

Spring 72 0 420.4 – 5.8 26.3 – – –
Autumn 4 322.7 18 4.5 20 80.7 4.0 56

Fig. 5  Comparison of comfort levels based on users’ feedback for the summer and winter periods
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higher, especially in the summer period. What is surpris-
ing is that the significantly lower light conditions in the 
winter period have almost no impact on user satisfaction, 
which is very comparable for the summer and winter 
period.

The noise level was largely satisfactory with a far 
greater majority of votes for silence and low noise and 
with only few complaints about high noise (Fig.  8). The 
maximum registered values did not exceed the level of 
80db which is the limit of comfort defined in the standard 
(EU Directive 2003/10/EC [45]). Likewise, no significant 

differences were observed between summer and winter 
periods. However, it must be stressed that the sensitivity 
of the sensor was limited and noise levels lower that 50db 
were not registered.

In terms of gender, the results were almost the same 
for men and women. However, this result is not objective 
due to the significant disproportion between the number 
of representatives of two sexes and no representative of 
any other gender—16 males and 2 females in the summer 
period, and 14 males and 2 females in the winter period.

Fig. 6  Comparison of interior temperature with thermal comfort in the summer and winter periods

Fig. 7  Comparison of light levels with visual comfort in the summer and winter periods



Page 11 of 14Rusek et al. Energy, Sustainability and Society           (2022) 12:13 	

Having said that, it is not surprising that even under 
optimal conditions that comply with the standard, 
there will always be some percentage of dissatisfied 
users. This is because human beings are individuals 
and there is no unique definition of comfort condi-
tions. Such a thesis was already stated 50  years ago, 
concluding that there are no ambient conditions that 
can make all individuals feel equally comfortable [46].

Level of thermal tolerance
The comfort or discomfort sensations of users are 
conditioned by a mixture of different environmen-
tal factors, such as humidity and atmospheric pres-
sure, which are not easy to identify unless they reach 

extreme values. Nevertheless, hot or cold sensation is 
very easy to pinpoint even if the variation is only of a 
few degrees. Temperature is the most easily noticeable 
and most influential factor that determines the level of 
comfort [47]. For this reason, the level of thermal toler-
ance of occupants in the office lab was studied. To this 
end, on February 17, 2020, without notifying the users, 
the heating temperature was slowly increased to dis-
cover the threshold between thermal comfort and dis-
comfort (sensation of heat). It was expected that—at a 
certain point—users would start to express their dissat-
isfaction by choosing the hot option in the crowd-sens-
ing app. As it can be seen in Fig.  9, this moment was 
reached at about 13:10, when the temperature exceeded 

Fig. 8  Comparison of noise levels with Acoustic comfort in the summer and winter periods

Fig. 9  Curve of thermal comfort threshold together with users’ comfort sensation
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the threshold of 26  °C. After that, a decrease in tem-
perature can be observed until a level of around 24.6 °C 
was reached, which, in this case, can be understood as 
the comfort level. This observation was checked and 
compared with the opinion of users regarding comfort 
and revealed that, surprisingly, users did not complain 
much regarding temperature. Only one vote at 13:06 
indicates a hot sensation. The other responses were 
more moderate.

Comparing this result with the data from other sen-
sors revealed the cause of the decrease in temperature. 
At 13:00, all the windows were opened and the heating 
was turned off. The windows were closed later at 13:50, 
while the heating remained off for the rest of the day. This 
demonstrates, that users, in spite of having a possibility 
to express their opinion on comfort, prefer to act instead. 
Probably, this is because they cannot see a direct impact 
of their opinion on the enhancement of comfort. Thus, 
they prefer to act (turn off the heating, open windows) 
instead of expressing their opinion, the latter not imme-
diately satisfying their needs.

Correlation between energy consumption, comfort level 
and environmental factors
To obtain a deeper insight into energy performance, pos-
sible correlations between energy consumption, user 
comfort and environmental factors were investigated. 
For this purpose, a Pearson correlation coefficient was 
used to measure the relationship between each of the 
individual parameters. First, energy consumption and 
comfort levels were tested which showed a very weak, 
almost neutral, correlation with the higher result of −0.2 
obtained between energy consumption and thermal com-
fort. This was an expected outcome given that heating 
and air conditioning were not considered according to 
the initial assumptions.

Similarly, no strong correlation between energy con-
sumption and environmental factors was found. The 
highest result between energy consumption and humid-
ity, equal to 0.4, is too weak to draw any binding conclu-
sions from it.

Also, surprisingly, no correlation between comfort 
levels and environmental factors was found, although it 
was expected to reveal a stronger correlation between 
temperature and thermal comfort, or noise and acoustic 
comfort, which intuitively seem to be an obvious associa-
tion. The data, however, reveal no such relationship. The 
highest result of 0.3 was between thermal comfort and 
noise. This may indicate that thermal tolerance and the 
sensitivity towards other environmental factors of the 
sample group was too diverse to be able to draw binding 
conclusions.

Discussion
The analysis of user activity based on sensors and crowd-
sensed data uncovered a regular occupancy pattern dur-
ing the week. Comparison of this pattern with energy 
consumption revealed a positive correlation between 
occupancy and energy consumption. In spite of this, it 
was observed that more than half the energy was con-
sumed after hours when no user activity was registered. 
This consumption was due to the servers and some work-
stations being turned on 24/7. To obtain a more in-depth 
insight, several indicators were used to compare the 
energy efficiency of the office lab across different periods. 
This revealed that measuring energy efficiency in terms 
of kWh per surface area is a useful metric for compar-
ing the physical properties of a building. However, indi-
cators that include a coefficient of person hours are more 
reliable for measuring performance and, ideally, a com-
bination of both—space and person—hours gives a more 
objective overview on building operation efficiency.

Analysis of energy usage during the lock down period 
revealed substantial use of energy when very low or mini-
mal energy usage was expected. This was because some 
employees used their home computers as terminals only, 
while the actual tasks were performed on the lab comput-
ers with remote desktop connections. These computers 
were turned on 24/7, which explains higher energy con-
sumption. In addition, a very important aspect to stress 
regarding home offices is that the energy consumed by 
each employee at their home was not included. However, 
it is very important to take this into account as it forms a 
part of the overall amount of energy consumed. Includ-
ing this consumption in the amount of energy consumed 
in the office may reveal that such a combined mode of 
working is less energy efficient than a fully in-person or 
fully homeworking mode. Home working produces an 
extra consumption at the office (workstations turned on 
24/7) and at the home of the employee (energy consumed 
by computers and all the devices needed to fulfill the 
employee’s duties, as well as indirect consumption which 
includes heating, air conditioning, light etc.,). However, 
more research is required to verify this hypothesis.

The comfort level based on the opinions of users 
revealed a general satisfaction with a relatively small 
number of extreme opinions. However, further inves-
tigation showed that user opinion did not correlate 
with objective values from sensors and those defined in 
the standards, especially regarding temperature. Users 
acknowledged feeling comfortable, while the tempera-
ture values were beyond the range defined in the stand-
ard. A further experiment showed that users do not rely 
on the comfort feedback mechanism, probably because 
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they cannot see a direct impact between expressing their 
opinion and an immediate adjustment in the ambient 
conditions. They prefer to act and adjust the environ-
mental parameters by themselves (turning off the heat-
ing, opening windows, etc.) rather than voting. Comfort 
standards are general, but the actual comfort or discom-
fort sensation is very personal and related to such aspects 
as a user’s gender or provenience. This is a very impor-
tant factor to bear in mind as building managers usually 
adjust ambient conditions according to the standards. 
This study shows that objective conditions defined in 
standards may diverge from those perceived by the users. 
For this reason, a more user-centered approach in build-
ing operations should be sought.

To discover a possible correlation between energy 
consumption, comfort, and indoor ambient factors, a 
Pearson coefficient was calculated. This exercise, how-
ever, showed very weak, close to neutral correlations 
which were not sufficient to be able to draw binding 
conclusions.

Conclusions
Based on the results of this study it is possible to define 
a set of actions whose purpose is to reduce energy con-
sumption. First of all, the space was occupied unevenly, 
leading to high concentrations of users during short 
periods of time and leaving the space unoccupied for the 
majority of the time. Changing the distribution of users 
or adjusting the working hours to increase occupation 
would lead to a more efficient use of space and energy.

Servers contributed considerably to the overall con-
sumption. Since they form an important part of the tasks 
performed in the lab, they cannot be turned off. Never-
theless, there are still some possibilities to reduce their 
impact. The servers may be replaced by newer and more 
efficient devices. Migration to one physical machine with 
fewer virtual servers should also be considered. It was 
calculated that reducing the number of servers to one by 
creating virtual machines would decrease the energy con-
sumption by 14.5% in the summer and by 12.3% in the 
winter period, which is a considerable amount.

It was also observed that some workstations were 
turned on constantly, this being the cause of the major-
ity of energy consumed. It should be further analyzed 
whether there is a need to keep these computers on all 
the time or to see whether they could be turned off at 
least for some periods. An ideal, hypothetical scenario 
in which all workstations were turned off when unused, 
would allow for a reduction in energy consumption 
of 26% in the summer period and 36.5% in the winter 
period. This shows that there are extensive opportuni-
ties for energy optimization. The combination of opera-
tional efficiency (optimization of servers) together with 

behavioral changes of users (turning off the workstations 
when unused) offers great opportunities for optimiza-
tion in the range of 40.5% in the summer and 48.8% in the 
winter period, which is in line with the 30–50% as shown 
by Lasla et al. [6] and 42% energy savings demonstrated 
by Ericson et al. [16].

This is strongly related to energy education and energy 
awareness which should go on hand-in-hand with opera-
tional energy efficiency. Users should be informed of the 
amount of energy they consume and its impact in terms 
of the economic and environmental footprint. An eco-
feedback mechanism could be used for that purpose. It 
is an effective tool that provides the occupants of a build-
ing with information regarding their energy consump-
tion, usually in a user-friendly way. Scientific energy units 
are not easy for everyone to comprehend. However, the 
information may be presented in a more intuitive form, 
for example, by the number of trees needed to off-set the 
carbon footprint produced. Such a presentation of energy 
impact could offer a good alternative to formal units as 
users need to understand the potential consequences 
of their overconsumption. The same mechanism might 
also advise users regarding their activities and possible 
changes in their behavior to increase energy efficiency. In 
addition, the comparison of their consumption to that of 
their peers is also an efficient tool.

Acknowledgements
The manuscript has been proofread by Easy Translations, Girona, Spain.

Authors’ contributions
JMF: concept of the study; RR: design and coordination. All coauthors (RR, JMF 
and JCL) were equally involved in the process of data acquisition, analysis, 
interpretation and in drawing conclusions. All authors read and approved the 
final manuscript.

Funding
This work was supported by the European Union’s Horizon 2020 E-Land 
project (Grant agreement 824388), as well as, CROWDSAVING project (Ref: 
TIN2016-79726-C2-2-R) funded by the Spanish Ministry of Economic Affairs 
and Digital Transformation.

Availability of data and materials
The data sets used and analyzed in the current study are available from the 
corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 26 January 2021   Accepted: 3 February 2022



Page 14 of 14Rusek et al. Energy, Sustainability and Society           (2022) 12:13 

References
	1.	 Martincigh L, Bianchi F, Di Guida M, Perrucci G (2016) The occupants’ per-

spective as catalyst for less energy intensive buildings. Energy Buildings 
115:94–101

	2.	 Karatas A, Stoiko A, Menassa CC (2016) Framework for selecting 
occupancy-focused energy interventions in buildings. Build Res Inf 
44(5–6):535–551

	3.	 Yan D, O’Brien W, Hong T, Feng X, Gunay HB, Tahmasebi F, Mahdavi A 
(2015) Occupant behavior modeling for building performance simula-
tion: current state and future challenges. Energy Buildings 107:264–278

	4.	 D’Oca S, Hong T (2015) Occupancy schedules learning process through a 
data mining framework. Energy Buildings 88:395–408

	5.	 Duarte C, Van Den Wymelenberg K, Rieger C (2013) Revealing occupancy 
patterns in an office building through the use of occupancy sensor data. 
Energy Buildings 67:587–595

	6.	 Lasla N, Doudou M, Djenouri D, Ouadjaout A, Zizoua C (2019) Wireless 
energy efficient occupancy-monitoring system for smart buildings. 
Pervasive Mob Comput 59: 101037

	7.	 Yezioro A, Dong B, Leite F (2008) An applied artificial intelligence 
approach towards assessing building performance simulation tools. 
Energy Buildings 40(4):612–620

	8.	 Virote J, Neves-Silva R (2012) Stochastic models for building energy 
prediction based on occupant behavior assessment. Energy Buildings 
53:183–193

	9.	 Li K, Hu C, Liu G, Xue W (2015) Building’s electricity consumption predic-
tion using optimized artificial neural networks and principal component 
analysis. Energy Buildings 108:106–113

	10.	 Sandels C, Widén J, Nordström L, Andersson E (2015) Day-ahead predic-
tions of electricity consumption in a Swedish office building from 
weather, occupancy, and temporal data. Energy Buildings 108:279–290

	11.	 Wang Z, Ding Y (2015) An occupant-based energy consumption predic-
tion model for office equipment. Energ Buildings 109:12–22

	12.	 Song K, Kwon N, Anderson K, Park M, Lee HS, Lee S (2017) Predicting 
hourly energy consumption in buildings using occupancy-related char-
acteristics of end-user groups. Energy Buildings 156:121–133

	13.	 Zhao D, McCoy AP, Du J, Agee P, Lu Y (2017) Interaction effects of building 
technology and resident behavior on energy consumption in residential 
buildings. Energy Buildings 134:223–233

	14.	 Paone A, Bacher JP (2018) The impact of building occupant behavior on 
energy efficiency and methods to influence it: A review of the state of 
the art. Energies 11(4):953

	15.	 Huovila A, Tuominen P, Airaksinen M (2017) Effects of building occupancy 
on indicators of energy efficiency. Energies 10(5):628

	16.	 Erickson VL, Carreira-Perpiñán MÁ, Cerpa AE (2014) Occupancy modeling 
and prediction for building energy management. ACM Trans Sensor 
Networks 10(3):1–28

	17.	 Taylor CE (2015) Occupancy matching. Energy Eng 112(3):11–21
	18.	 Haynes B, Suckley L, Nunnington N (2017) Workplace productivity and 

office type: an evaluation of office occupier differences based on age and 
gender. J Corporate Real Estate 19:111–138

	19.	 Horr Y, Arif M, Kaushik A, Mazroei A, Katafygiotou M, Elsarrag E (2016) 
Occupant productivity and office indoor environment quality: A review 
of the literature. BuildEnviron 105:369–389

	20.	 Martell M, Rodríguez F, Castilla M, Berenguel M (2020) Multiobjective 
control architecture to estimate optimal set points for user comfort and 
energy saving in buildings. ISA T 99:454–464

	21.	 ASHRAEE (AMERICAN SOCIETY OF HEATING, REFRIGERATING & AIR-
CONDITIONING ENGINEERS). (2017). Standard 55: thermal environmental 
conditions for human occupancy.

	22.	 ISO Standard 7730 (2005) Ergonomics of the thermal environment—Ana-
lytical determination and interpretation of thermal comfort using calcula-
tion of the PMV and PPD indices and local thermal comfort criteria. BS EN 
ISO 7730:2005

	23.	 Haynes BP (2007) Office productivity: a shift from cost reduction to 
human contribution. Facilities 25:452–462

	24.	 Aragon V, Gauthier S, Warren P, James PA, Anderson B (2019) Developing 
English domestic occupancy profiles. Build Res Inf 47(4):375–393

	25.	 Abdul-Wahab SA (2011) Sick building syndrome Berlin: Springer-Verlag 
10:978–983

	26.	 Salimi S, Hammad A (2019) Critical review and research roadmap of office 
building energy management based on occupancy monitoring. Energy 
Buildings 182:214–241

	27.	 Rueda L, Agbossou K, Cardenas A, Henao N, Kelouwani S (2020) A com-
prehensive review of approaches to building occupancy detection. Build 
Environ 180:106966

	28.	 Zhu T, Xiao S, Zhang Q, Gu Y, Yi P, Li Y (2015) Emergent technologies in big 
data sensing: a survey. Int J Distrib Sens N 11(10):902982

	29.	 Meteo.cat. (2020). Estacions Meteorològiques. Retrieved 14 December 
2020, from https://​www.​meteo.​cat/​wpweb/​clima​tolog​ia/​serve​is-i-​dades-​
clima​tiques/​anuar​is-​de-​dades-​meteo​rolog​iques/​xarxa-​desta​cions-​meteo​
rolog​iques-​autom​atiqu​es/

	30.	 Pérez-Lombard L, Ortiz J, Pout C (2008) A review on buildings energy 
consumption information. Energy Buildings 40(3):394–398

	31.	 Santin OG (2011) Behavioural patterns and user profiles related to energy 
consumption for heating. Energy Buildings 43(10):2662–2672

	32.	 Zhao HX, Magoulès F (2012) A review on the prediction of building 
energy consumption. Renew Sust Energ Rev 16(6):3586–3592

	33.	 Yang L, Yan H, Lam JC (2014) Thermal comfort and building energy 
consumption implications–a review. ApplEnerg 115:164–173

	34.	 Mikulik J (2018) Energy demand patterns in an office building: a case 
study in Kraków (Southern Poland). Sustainability 10(8):2901

	35.	 Gagge AP, Stolwijk JAJ, Hardy JD (1967) Comfort and thermal sensations 
and associated physiological responses at various ambient temperatures. 
Environ Res 1(1):1–20

	36.	 Benesty, J., Chen, J., Huang, Y., & Cohen, I. (2009). Pearson correlation coef-
ficient. In Noise reduction in speech processing (pp. 1–4). Springer, Berlin, 
Heidelberg.

	37.	 Yang J, Santamouris M, Lee SE (2016) Review of occupancy sensing 
systems and occupancy modeling methodologies for the application in 
institutional buildings. Energyy Buildings 121:344–349

	38.	 Calì D, Osterhage T, Streblow R, Müller D (2016) Energy performance gap 
in refurbished German dwellings: Lesson learned from a field test. Energy 
Buildings 127:1146–1158

	39.	 Dooley, K. (2011, October). New ways of working: Linking energy 
consumption to people. In Proceedings at the World Sustainable Building 
Conference SB.

	40.	 Ministerio de Fomento. (2019). Documento Básico. Seguridad en caso de 
incendio. Secretaría de Estado de Infraestructuras, Transporte y Vivienda, 
Spain.

	41.	 Martani C, Lee D, Robinson P, Britter R, Ratti C (2012) ENERNET: Studying 
the dynamic relationship between building occupancy and energy 
consumption. Energy Buildings 47:584–591

	42.	 ASHRAE (American Society of Heating and Refrigerating Engineers). 
(1997), Handbook of Fundamentals: Physiological Principles, Comfort, 
Health, New York.

	43.	 European Committee for Standardization (2007). 15251, Indoor environ-
mental input parameters for design and assessment of energy perfor-
mance of buildings addressing indoor air quality, thermal environment, 
lighting and acoustics. European Committee for Standardization, Brussels, 
Belgium.

	44.	 European Committee for Standardization (2011). EN 12464–1:2011 Light 
and lighting – Lighting of work places. Part 1: Indoor work places. Euro-
pean Committee for Standardization, Brussels, Belgium.

	45.	 EU Directive 2003/10/EC. (2003) of The European Parliament and of the 
Council of 6 February 2003 on the minimum health and safety require-
ments regarding the exposure of workers to the risks arising from physi-
cal agents (noise) (Seventeenth individual Directive within the meaning 
of Article 16(1) of Directive 89/391/EEC

	46.	 Fanger, P. O. (1970). Thermal comfort. Analysis and applications in 
environmental engineering. Thermal comfort. Analysis and applications in 
environmental engineering.

	47.	 Djekic J, Djukic A, Vukmirovic M, Djekic P, Brankovic MD (2018) Thermal 
comfort of pedestrian spaces and the influence of pavement materials 
on warming up during summer. Energy Buildings 159:474–485

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://www.meteo.cat/wpweb/climatologia/serveis-i-dades-climatiques/anuaris-de-dades-meteorologiques/xarxa-destacions-meteorologiques-automatiques/
https://www.meteo.cat/wpweb/climatologia/serveis-i-dades-climatiques/anuaris-de-dades-meteorologiques/xarxa-destacions-meteorologiques-automatiques/
https://www.meteo.cat/wpweb/climatologia/serveis-i-dades-climatiques/anuaris-de-dades-meteorologiques/xarxa-destacions-meteorologiques-automatiques/

	Influence of occupant presence patterns on energy consumption and its relation to comfort: a case study based on sensor and crowd-sensed data
	Abstract 
	Background: 
	Methods: 
	Results: 

	Background
	Influence of user occupancy patterns on energy consumption
	Energy consumption and user comfort balance
	Acquisition of energy-related user behavior data

	Methods
	Case study description
	Time span of the case study
	Participants of the case study
	Objective vs. subjective measurements
	Data preparation and preprocessing

	Results
	User occupancy and energy consumption patterns
	Energy efficiency indicators
	COVID-19 lock down and post lock down impact on office energy efficiency
	User’s perception of indoor comfort conditions
	Level of thermal tolerance
	Correlation between energy consumption, comfort level and environmental factors

	Discussion
	Conclusions
	Acknowledgements
	References


